Fisher® EH and EHA Control Valves

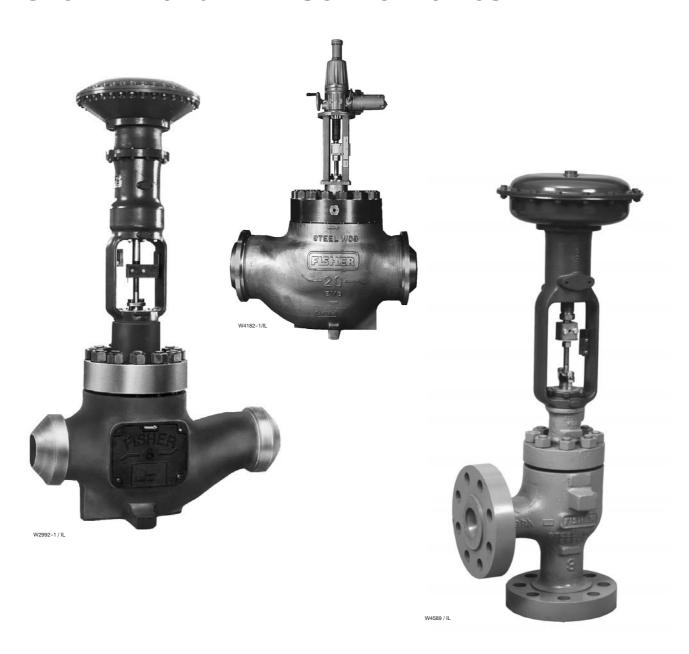


Figure 1. Fisher® EH and EHA Control Valves

Contents	Tables	
EH Series Valves	Availability Chart Liquid Flow Coefficients (NPS 8 to 14) Available Valve Configurations and Sizes Valve Sizes and End Connection Styles Increased Pressure/Temperature Ratings Port Diameters, Valve Plug Travel, Yoke Boss Diameters for TSO Trim Shutoff Classifications Trim Material Combinations Construction Materials and Temperature Capabilities Valve Plug Travel (NPS 8 to 14) Additional Specifications Yoke Boss and Valve Stem Diameters Weights Flowing Pressure Drop Limits	4 14 15 15 16 19 27 29 29
	Installation	
	Coefficients	
Pressure/Temperature Limits 24	Specifications	

Table 1. Availability Chart

Valve Size, NPS	CL1500	CL1500 Intermediate	CL2500	CL2500 Intermediate
1-1/2 x 1			EHS	EHS
2 x 1			EHS	
2				EHD, EHS, EHT
3 x 2			EHD, EHS, EHT	EHD, EHS, EHT
3	EHAT, EHAD	EHAD, EHAS, EHAT	EHD, EHS, EHT EHAD, EHAS, EHAT	EHD, EHS, EHT EHAD, EHAS, EHAT
4 x 3			EHD, EHS, EHT	
4	EHAT, EHAD	EHAD, EHAS, EHAT	EHD, EHS, EHT EHAD, EHAS, EHAT	EHD, EHS, EHT EHAD, EHAS, EHAT
6 x 4			EHD, EHS, EHT	
6	EHAT, EHAD	EHAD, EHAS, EHAT	EHD, EHS, EHT EHAD, EHAS, EHAT	EHD, EHS, EHT EHAD, EHAS, EHAT
8 x 6			EHD, EHS, EHT	
8	EHD, EHT, EHAD, EHAS, EHAT	EHD, EHT EHAD, EHAS, EHAT	EHD, EHT	EHD, EHT
10 x 8	EHD, EHT	EHD, EHT	EHD, EHT	EHD, EHT
12	EHD, EHT	EHD, EHT	EHD, EHT	EHD, EHT
14			EHD, EHT	
14 x 12	EHD, EHT	EHD, EHT	EHD, EHT	EHD, EHT
16 x 14			EHD, EHT	
20		EHD		

EH (globe)

■ EHS (NPS 1-1/2 x 1 through 6), ■ EHD (NPS 2 through 20), and ■ EHT (NPS 2 through 14)

EHA (angle)

■ EHAS (NPS 3 through 8), ■ EHAD (NPS 3 through 8), and ■ EHAT (NPS 3 through 8)

EH Series Valves

These valves (figure 1) are specially designed for high-pressure applications. Fisher® EH valve configurations incorporate proven techniques in flow-stream contouring for higher capacities and in valve trim design for reliability in severe applications.

The temperature limits of EHT valves can be extended above 232°C (450°F) by using PEEK (PolyEtherEtherKetone) anti-extrusion rings in combination with a spring-loaded PTFE seal. The PEEK anti-extrusion rings expand to close off the clearance gap between the plug and the cage where the PTFE seal may extrude at high temperatures and pressures. The temperature limits are extended to 316°C (600°F) for non-oxidizing service and to 260°C (500°F) for oxidizing service.

Unless otherwise noted, all NACE references are to NACE MR0175-2002. Contact Emerson Process Management for information on NACE MR0175/ISO 15156 or NACE MR0103.

Features

- Improved Cage Design—Drilled-hole cages, offering excellent strength and additional resistance to destructive vibration, are standard. Special materials of construction are readily available.
- Optional O-ring Seat Ring Gasket Construction—Use of O-ring construction provides excellent shut-off with minimal seat ring installation torques for temperatures up to 232°C (450°F). O-ring construction is standard on EHT valves.
- Increased Pressure/Temperature
 Ratings—Steel EH and EHA valves with buttwelding

end connections have Intermediate Standard Ratings. With nondestructive testing, these valves can conform to ASME Intermediate Special Ratings, which allow even higher pressure/temperature applications. See tables 7 and 8 for specific ratings.

- Long Trim Life—Hardened materials of construction for the cage, valve plug, cage guiding, and other trim parts are standard for all applications, providing excellent wear resistance. In all applications, rugged cage guiding provides increased valve plug stability. Increased stability results in reduced vibration and other mechanical stresses, which contributes to long trim life.
- Piping Economy—The availability of expanded end connections on EH valves may eliminate the need for line swages while accommodating oversized piping arrangements.
- Control of Low Flow Rates/Tight Shut-off— Micro-Form or Micro-Flute valve plugs (figure 6 or 7) provide superb rangeability in high-pressure, low-flow applications. A choice of several restricted port diameters helps match valve capacity to required flow, helps provide necessary control with full travel, and helps prevent throttling near the seat.

For EHA valves only, and in low-flow applications where cavitation damage may occur, the Micro-Flat style valve plug can be used. For soot-blower applications, where the valve must provide tight shut-off, a special trim design is available. Please contact your Emerson Process Management sales office for more information.

For low-flow applications where cavitation damage may occur and the minimum required C_v is equal to or greater than 0.05, Cavitrol® III with Micro-Flat trim can be used in both EH and EHA valves. Please contact your Emerson Process Management sales office for more information.

- High-Temperature, Class V Shutoff—Use of C-seal trim (see figure 21) permits Class V shutoff up to 593°C (1100°F) for up to 4-3/8 inch port. Bore Seal trim will permit Class V shutoff up 593°C (1100°F) for 5-3/8 inch ports and larger.
- Excellent Sealing—HIGH-SEAL packing systems provide excellent sealing to conserve valuable or hazardous process fluid and to protect against the emission of hazardous or polluting fluids. This system (figure 2) features graphite packing material and heavy-duty live loading.

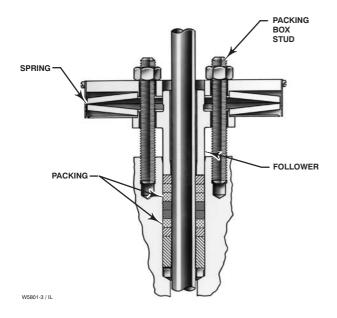
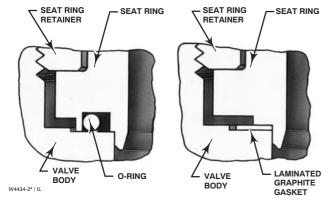



Figure 2. Typical HIGH-SEAL Packing System

O-RING GASKET CONSTRUCTION, STANDARD CONSTRUCTION FOR EHT, CAVITROL TRIMS, AND SOUR SERVICE

LAMINATED GRAPHITE GASKET

NOTES:

1 PREFERRED FOR ALL OTHER BODY CONSTRUCTIONS WHERE TEMPERATURE ALLOWS.

Figure 3. Seat Ring Gasket Constructions

 High Capacity—Careful consideration of aerodynamic and hydrodynamic principles in the design of the flow stream passages results in 30 to 40 percent higher capacity than conventional valves with comparable port sizes and travels.

Table 2. Liquid Flow Coefficients, C_V, at Maximum Travel with Equal Percentage Cage (Modified Equal Percentage Characteristic) (NPS 8 through 14 Valves)(1)

VALVE	PRESSURE	VALVE S	IZE, NPS
DESIGN	RATING	8 and 10	12 and 14
EHD, EHT	CL1500	912	1830
בחט, בחו	CL2500	584	1010
1. See the section	titled Coefficients in th	nis bulletin for addition	al sizing data.

- Long Thermal-Cycle Life—The seat ring design minimizes operational stresses, thereby reducing chances of distortion and resultant leakage caused by temperature cycling. The hung cage design allows thermal expansion of the cage without affecting the seat ring gasket loading.
- Operational Economy—Balanced trim constructions reduce forces acting on the valve plug, thus reducing actuator thrust requirements and permitting the use of smaller actuators. This, combined with capacities higher than comparably priced globe valves, makes the NPS 8 through 14 EH Series valves very economical for high-pressure. high-flow service. Actuator selection for NPS 20 valves can be made from electromechanical or electrohydraulic styles that use readily available power sources.
- Reliability—All aspects of the control valve (material selection, trim components, packing, and control accuracy) are designed, built, and tested to assure performance and reliability. Extensive metallurgical evaluation results in state-of-the-art cage and valve plug stem materials that help ensure trim life and dependable performance.
- Control Accuracy—The NPS 20 cage and valve plug deliver accurate control of high pressure and high capacity flow. Each cage has milled openings and is flow tested for the required flow characteristic. With precise, accurate cage openings, accurate installed characteristics result; valves in parallel have the same flow at the same plug position. The cone-shaped plug reduces fluid turbulence, helps ensure plug stability, and aids positioning accuracy.
- Easy Maintenance—The bonnet lifts off to allow trim access. The separate seat ring and cage allow parts removal and maintenance. The globe configuration reduces the uneven trim wear and resultant maintenance downtime normally associated with slant configurations. Installation with the stem vertical above the bonnet also makes trim removal and installation easy.

Figure 4. NPS 3 Fisher® EH Valve with 657 Actuator

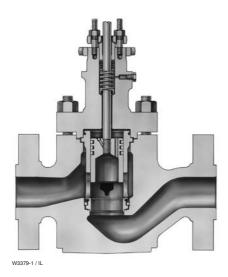


Figure 5. Fisher® EHD Valve Body Assembly

• Control Flexibility—Special cage characterization (standard, Whisper Trim®, or Cavitrol trim) can be supplied to satisfy almost any combination of flow and noise or cavitation abatement. Cage characterization and efficient flow passages provide close control for low flow, high

pressure drop conditions as well as high flow, low pressure drop conditions. A choice of actuator styles allows wide selection of power and control capabilities.

NPS 1-1/2 x 1 through 6 Globe Valves NPS 3 through 8 Angle Valves

EH Series valves (figure 4) offer higher capacities, rugged cage guiding, hardened trim materials, and are available with special trims for noise attenuation and cavitation abatement. An EH valve package can be created for specific service conditions from a variety of special features, including oversized ends, intermediate ratings, special trim materials, and special trim configurations.

Because of flow capacity and severe service capabilities, both EH and EHA valves are used for many high-pressure applications in process industries such as power generation, hydrocarbon production, chemical processing, and refining. The EHD (figure 5) uses a balanced valve plug and is well suited for general applications where extremely tight shutoff is not required. The EHS (figures 6 and 7) has an unbalanced valve plug and provides up to Class V shutoff. The EHT (figure 8) has a balanced valve plug and offers up to Class V shutoff with process temperatures below 232°C (450°F).

EHA valves--EHAD (figure 9), EHAT (figure 10), and EHAS--are angle versions of the EH valve. Trim is interchangeable between an EH valve and the next larger EHA. For example, the trim used in an NPS 3 EHD is the same size as (and is interchangeable with) the trim in the NPS 4 EHAD.

EH valves are available in CL2500 ratings. EHA valves are available in CL900 and 1500 only. Because these valves feature a thicker body wall, both EH and EHA valves are available with intermediate ratings. See the Features section in this bulletin.

EHA valves provide many of the same features available with EH valves. One important feature is the availability of special trims for aerodynamic noise attenuation, for cavitating liquid service, and for sour service.

Trims (NPS 1-1/2 x 1 through 6 Globe Valves and NPS 3 through 8 Angle Valves) See figures 6, 7, 8, 9, 10, and 11.

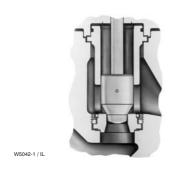


Figure 6. Fisher® EHS Trim with Micro-Form Valve Plug

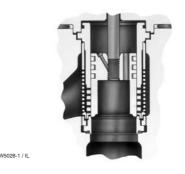


Figure 9. Fisher® EHAD Trim with Whisper Trim® III Level D Cage

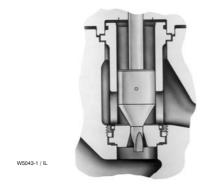


Figure 7. Fisher® EHS Trim with Micro-Flute Valve Plug

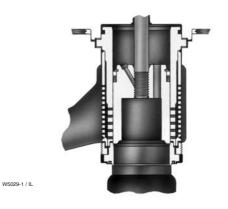


Figure 10. Fisher® EHAT Trim (NPS 3 through 8 Angle Valves)

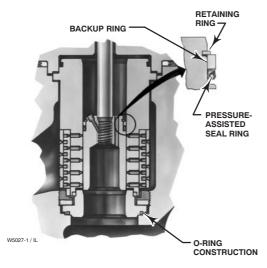
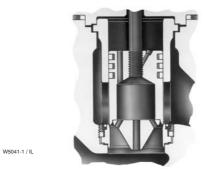



Figure 8. Fisher® EHT Trim w/ Cavitrol® III Three-Stage Cage

DIVERTER CONE VALVE PLUG USED FOR $\Delta P\!\!>\!3000$ PSI (207 BAR) OR FOR WHISPER TRIM III LEVEL A, B, OR C CAGES

Figure 11. Diverter Cone Plug Used in NPS 6 Fisher® EHD and EHT Valves (Flow Up Only)

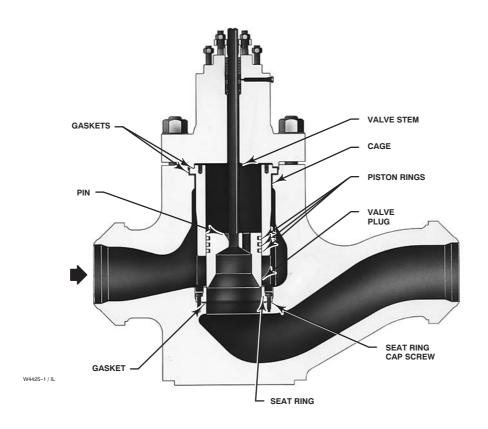


Figure 12. Fisher® EHD Valve Assembly (NPS 8 through 14 Globe Valves)

Figure 13. NPS 8 Fisher® EH Valve with 667 Actuator

NPS 8 through 14 Globe Valves

EH Series control valves (figure 13) are large, high-pressure globe valves that incorporate proven techniques in flow-stream contouring and in seat ring and valve plug design. These features, along with rugged cage guiding and hardened trim materials, make the EH Series valves reliable high-capacity valves.

These valves are used for many high-pressure applications in the power, process, oil production, chemical, refining, and other industries. The EHD valve (figure 12) is well-suited to general applications where extremely tight shutoff is not required, and the EHT valve (figure 14) offers up to Class V shutoff for applications with relatively low process temperatures.

Principle of Operation (NPS 8 through 14 Globe Valves)

EHD and EHT valves, shown in figures 12 and 14, are balanced valve designs. When the valves are opening or closing, pressure registers on top of the valve plug through the registration holes in the plug. The force of the pressure on top of the plug balances the force of the pressure on the bottom of the plug to reduce the actuator force required.

Figure 14. Fisher® EHT Trim (NPS 8 through 14 Globe Valves)

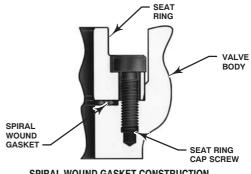
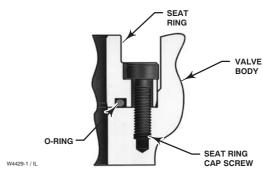


Figure 15. Fisher® EHD Trim with Whisper Trim® III Level D Cage (NPS 8 through 14 Globe Valves)



DIVERTER CONE VALVE PLUG USED IN BOILER FEEDWATER SERVICE FOR $\Delta P\!>1000$ PSI (69 BAR) AND IN OTHER APPLICATIONS FOR $\Delta P\!>2000$ PSI (138 BAR) OR FOR WHISPER TRIM III LEVEL A, B, OR C CAGES

Figure 16. Diverter Cone Valve Plug Used in Fisher® EHD and EHT Valves (NPS 8 through 14 Globe Valves, Flow Up Only)

SPIRAL WOUND GASKET CONSTRUCTION (STANDARD CONSTRUCTION)

O-RING GASKET CONSTRUCTION
(STANDARD CONSTRUCTION FOR SOUR SERVICE AND
OPTIONAL FOR OTHER VALVE CONSTRUCTIONS)

Figure 17. Seat Ring Gasket Constructions (NPS 8 through 14 Globe Valves)

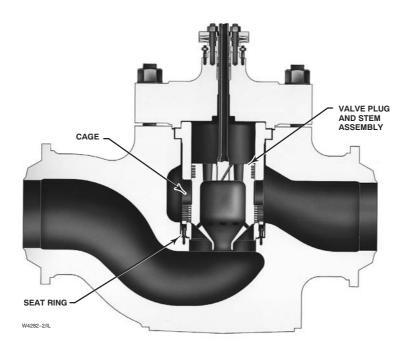


Figure 18. Sectional of NPS 20 Fisher® EHD Control Valve Assembly

NPS 20 Globe Valves

The NPS 20 EHD control valve (figure 19) is a large, high-pressure, single-port, globe valve designed to closely and dependably control high-pressure, high-temperature media in the power and hydrocarbon industries. For example, NPS 20 EHD control valves are used in sliding pressure systems to control high-pressure steam in fossil-fueled power plants.

Advanced, yet successfully field-proven, the NPS 20 EHD control valve usually incorporates special

design features to satisfy specific customer requirements. For example, figure 18 illustrates a specially characterized cage. Both Whisper Trim cage holes and large cage windows provide the customer-required flow characteristic. Additionally, the drilled Whisper Trim holes in the cage provide noise abatement.

Standard construction details such as the cone-shaped valve plug and stem assembly, separate seat ring, and HIGH-SEAL packing arrangement are also shown in figure 18.

Figure 19. NPS 20 Fisher® EHD Valve with Electromechanical Actuator

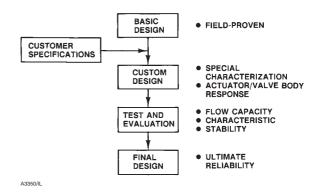


Figure 20. Custom Design Sequence (NPS 20 Globe Valves)

Custom Design Capability (NPS 20 Globe Valves)

Sliding pressure systems, as well as other control systems, have specific performance characteristics that require special control valve constructions. These special constructions must perform dependably and provide accurate system operation and plant reliability.

As shown in figure 20, the basic NPS 20 EHD valve configuration can be designed to meet customer specifications. Special cage characterization and actuator/valve response characteristics can be designed and then confirmed through exhaustive testing and evaluation. Flow testing of these large valves takes place at the Emerson Process Management R.A. Engel Technical Center Flow Laboratory, the largest facility of its kind in North America.

The final control valve assembly provides reliable, dependable performance. This performance delivers controllability for not only the control valve but also the plant control system, sliding pressure or otherwise.

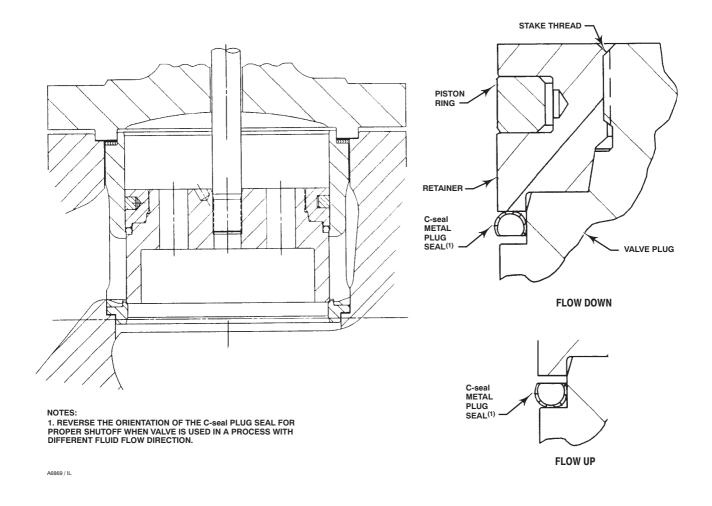


Figure 21. C-seal™ Trim

C-seal™ **Trim Description**

C-seal trim (figure 21) is available for valves with port diameters from 2.875 inches through 4-3/8 inches.

With C-seal trim, a balanced valve can achieve high-temperature, Class V shutoff. Because the C-seal plug seal is formed from metal (N07718 nickel alloy) rather than an elastomer, a valve equipped with the C-seal trim can be applied in processes with a fluid temperature of up to 593°C (1100°F).

Bore Seal Trim Description

The Bore Seal design (figure 22) employs a variation of the proven C-seal trim with enhancements for use with the larger port EH hung cage. In the Bore Seal trim, the primary plug-to-seat interface is a metal-to-metal line contact while the secondary metallic seal engages a controlled bore region in the cage when the plug is seated (see figure 22). During modulation, the secondary seal does not contact the upper cage wall and the controlled bore region remains protected, which extends the shutoff life of the valve.

Figure 22. Bore Seal Trim

Fisher TSO (Tight Shutoff) Trim Capabilities

TSO trim consists of a protected soft seat plus PEEK anti-extrusion rings with a spring-loaded PTFE plug

seal. Used only in flow down applications, TSO trim offers unparalleled shutoff integrity, resulting in long plug and seat life. See figure 23 and tables 9 and 10. For additional information contact your Emerson Process Management sales office.

Table 3. Available Globe Valve Configurations and Valve Sizes⁽¹⁾ (NPS 1-1/2 x 1 through 6 Globe Valves)

P	VAILABLE CONFIGU	IRATIONS	VA	LVE SIZES (NF	PS) AND PRES	SURE RATING	
Valve	Valve Plug	Cage	1-1/2 x 1, 2 x 1	3 x 2	3, 4 x 3	4, 6 x 4	6, 8 x 6
Design	Design Style	Style	CL2500	CL2500	CL2500	CL2500	CL2500
	Micro-Form	Quick-Opening ⁽²⁾	X	X			
		Standard ⁽³⁾		X	Х	Х	Х
EHS		Whisper Trim III		X	Х	Х	Х
	Standard	Cavitrol III: 2-stage 3-stage	X	 X			
		Standard ⁽³⁾		X	Х	Х	Х
		Whisper Trim III		X	Х	X	Х
EHT	Standard	Cavitrol III: 2-stage 3-stage		X	X X	X X	X X
EHD	Ctondord	Standard ⁽³⁾		X	Х	X	Х
ЕПО	Standard	Whisper Trim III		X	X	X	Х

Table 4. Available Angle Valve Configurations and Valve Sizes (NPS 3 through 8 Angle Valves)

A	AVAILABLE CONFIGU	RATIONS	VALVE SIZES (NPS) AND PRESSURE RATING			
Valve Valve Plug		Cage	3	4	6	8
Design	Design Style	Style	CL1500	CL1500	CL1500	CL1500
Micro-Form	Micro-Form	Quick-Opening ⁽¹⁾	X			
	Micro-Flute	Quick-Opening				
EHAS		Standard ⁽²⁾	X	Х	Х	Х
211/10	Standard	Whisper Trim III	X	Х	X	Х
	Standard	Cavitrol III: 2-stage 3-stage				
		Standard ⁽²⁾	Х	Х	Х	Х
EHAT	Standard	Whisper Trim III	X	Х	Х	Х
LIIAI	Staridard	Cavitrol III: 2-stage	X	X	X	Х
		3-stage	X	X	X	X
EHAD	Standard	Standard ⁽²⁾	X	X	Х	Х
EHAD	Standard	Whisper Trim III	X	Х	X	Х

Table 5. Globe Valve Sizes and End Connection Styles⁽¹⁾ (NPS 1-1/2 x 1 through 6 Globe Valves)

VALVE	CL2500 ⁽²⁾										
SIZE,		BWE		014/5	57.	5.5					
NPS	SCH 80	SCH 160	SCH 160 SCH XXS SWE	SWE	RTJ	RF					
1-1/2 x 1	X		X	X	Х	Х					
2 x 1	X		X	X	X	X					
3 x 2	X		Х		X	Х					
3	×		X		X	X					
4 x 3	×		X		X	X					
4	X		X		X	X					
6 x 4	Х		Х		X	Х					
6	×		X		X	X					
8 x 6	X	X			X	X					

X—Indicates available construction.

1. Two numbers indicate end connection by nominal valve size. For example, 3 x 2 indicates 3 inch end connection with NPS 2 valve size.

2. Linear cage used on NPS 2 and 3 x 2 valves.

3. Standard cages are equal percentage, modified equal percentage, and linear cages.

<sup>X—Indicates available construction.
1. Linear cage used on NPS 2 and 3 valves.
2. Standard cages are equal percentage, modified equal percentage, and linear cages.</sup>

X—Indicates available construction.

1. EN (or other) ratings and end connections can usually be supplied; consult your Emerson Process Management sales office.

2. For valve ratings of EH Series valves with BWE connections, refer to separate bulletin. Increased Pressure/Temperature Ratings for EH Series and EW Series Steel Valves.

Table 6. Angle Valve Sizes and End Connection Styles⁽¹⁾ (NPS 3 through 8 Angle Valves)

VALVE	CL	.900	CL1500						CL1500		CL1500	
SIZE,	DE.	DTI	BWE			OWE	DTI	DE				
NPS	RF	RTJ	SCH 80	SCH 160	SCH XXS	SWE	RTJ	RF				
3	X	Х	X	X			X	Х				
4	X	X	X	X			X	X				
6	X	X	X	X			X	X				
8	X	X	X		X		X	Х				

Table 7. Increased Pressure/Temperature Ratings for Steel Fisher® EH Series Globe Valves with Buttwelding End Connections(1)

VALVE	CL1500	CL2500
SIZE, NPS	Intermediate Rating (ASME B16.34)	Intermediate Rating (ASME B16.34)
1		3862 ⁽²⁾
1-1/2 x 1		3021
2		3273
3		2932
4		3294
6		2987
8	1866	2943
10	1566	2522
12	1650	2940
14 x 12	1650	2753

Table 8. Increased Pressure/Temperature Ratings for Steel Angle Valves with Buttwelding End Connections (NPS 3 through 8 Angle Valves)

VALVE SIZE, NPS	CL1500 Intermediate Rating (ASME B16.34)
3	1508
4	1569
6	1804
8	1860

Table 9. Port Diameters, Valve Plug Travel, Yoke Boss Diameters for TSO (Tight Shutoff) Trim

		MAX TRAVEL YOKE BOSS SIZE		PORT DIAMETER				C _√ REDUCTION		
VALVE DESIGN TRIM				Nominal		Actual TSO		AT 100%		
		mm	Inch	mm	Inch	mm	Inch	mm	Inch	TRAVEL ⁽¹⁾
EHT NPS 6	CAV III 3-Stage CL2500	95.3	3.75	90 127	3-9/16 5	111	4.375	106	4.1875	0%
EHT NPS 6	Std CL2500	76.2	3	90 127	3-9/16 5	111	4.375	106	4.1875	5% (linear) 5% (equal %)

See bulletin 59.1:026 for additional information.
 Intermediate rating of 4080 is available with special bolting materials in most valve body materials. Contact your Emerson Process Management sales office.

Table 10. Shutoff Classifications per ANSI/FCI 70-2 and IEC 60534-4

EHD/EHAD		`	5 inch) and smaller) to 92.1 mm (3.625 inch)	II—Standard
EHD/EHAD		58.7 mm (2.3125 inch) to 92.1 mm (3.625 inch)	II—Standard
			,	III—Optional
		111.1 mm (4.3	75 inch) and larger	III—Standard IV—Optional
EHD	Valve Size, NPS	Port Diameter, mm (Inches)	Cage Style	ANSI/FCI Leakage Class
(CL1500)	8 10	177.8 (7)	Eq. %, Mod. Eq. % Linear (std. cage) Linear (Whisper III, A1, B3, C3)	V to 593°C (1100°F) (for port diameters from 136.5 through 177.8 mm [5.375 through 7-inches] with optional C-seal trim)
	4 6 x 4	73 (2.875)	Eq. %, Mod. Eq. %, Linear (std. cage), Linear (Whisper III, A1, B3, C3)	V (for port
			Linear (Cav III, 2-stage)	diameters from 73 through 136.5 mm [2.875
EHD (CL2500)	6 8 x 6	111.1 (4.375)	Eq. %, Mod. Eq. %, Linear (std. cage), Linear (Whisper III, A1, B3, C3, D3)	through 5.375 inches] with optional C-seal trim)
			Linear (Cav III, 2- and 3-stage)	
	8 10	136.5 (5.375)	Eq. %, Mod. Eq. %, Linear (std. cage), Linear (Whisper III, A1,	V to 593°C (1100°F) (for port diameters from 136.5 through 177.8 mm [5.375 through 7-inches]
	12 14	177.8 (7)	B3, C3, D3)	with optional Bore seal trim)
EHS, EHAS, EHT, E	EHAT	All	Cavitrol III	V
EHS, EHAS, EHT, I	EHAT	All	Std or w/ Micro-Form or w/ Micro-Flute	IV—Standard, V—Optional
EHT w/ TSO (Tight S	Shutoff)	See table 9	See table 9	TSO - Optional TSO is not an ASME leakage class. Valves with TSO trim are factory tested to a more stringent Fisher test requirement of no leakage at time of shipment. Test medium is water. Specify service △P when ordering. Test procedure is ANSI/FCI Class V test procedure B.
EHT w/ PEEK ⁽¹ Anti-Extrusion Rin		25.4 mm (1- inch) to 254 mm (10- inch)	All	V to 316°C (600°F)
1. PEEK (PolyEtherEtherI	Ketone)			·

Trim Selection Guidelines for NPS 1-1/2 x 1 through 6 Globe and NPS 3 through 8 Angle Valves

Please refer to the following descriptions as a guideline for the selection of appropriate trims:

- Trim 50—Trim 50 is the standard trim for carbon steel and alloy steel body materials and is recommended for general and severe service applications up to 427°C (800°F). Typical applications for Trim 50 include services in water, boiler feedwater, non-sour hydrocarbons, and steam. The S41600 (416 stainless steel) heat-treated plug and seat ring have a hardness similar to CoCr-A (Alloy 6).
- Trim 53—Trim 53 should be used in all high temperature applications between 427°C (800°F) and 566°C (1050°F) unless chlorides are present. The presence of chlorides could lead to stress corrosion cracking of the CA28MWV (422 stainless steel) cage.
- **Trim 54**—Trim 54 is the standard trim for stainless steel body materials. It should be used where hard-faced trim is specified.

Trim 54 should not be used in boiler feedwater due to amine corrosion problems associated with CoCr-A.

• Trim 56—Trim 56 should be used for sour service.

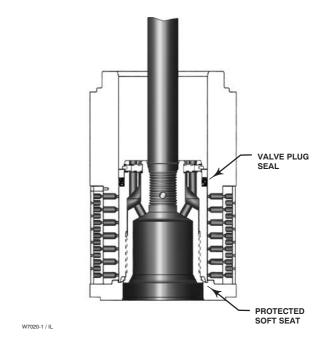


Figure 23. Typical Balanced TSO (Tight Shutoff) Trim

• Trim 57—Trim 57 should be used for boiler feedwater service when limits exceed those specified for Trim 50.

Care should be taken when specifying this trim in small sizes for applications where chlorides are present due to stress corrosion cracking problems with S44004 (440C stainless steel).

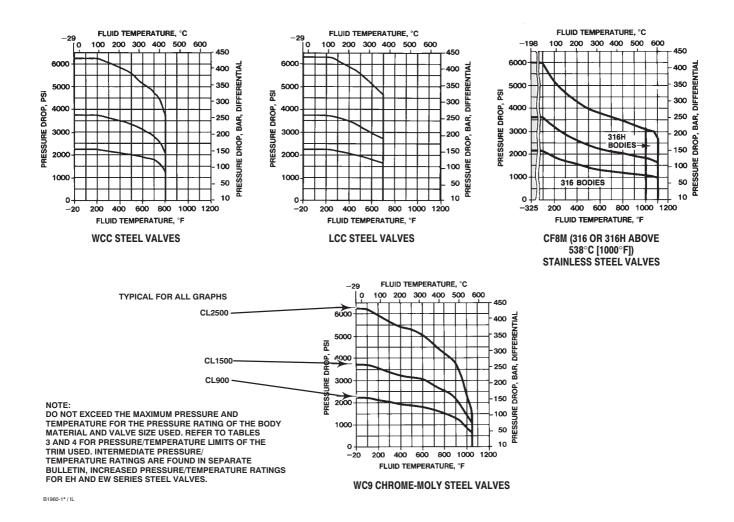


Figure 24. Pressure/Temperature Limits for CL2500 Valves (NPS 1-1/2 x 1 through 6 Globe) and CL900, 1500, and 2500 Valves (NPS 3 through 8 Angle)

Material Selection Guidelines

Please use these numbered steps as a guideline for the selection of materials:

- 1. Determine the pressure/temperature rating of the valve size and material required. Inlet pressure and temperature must always be limited by the applicable ASME pressure/temperature rating.
- 2. Select the desired valve style from the Available Configurations specification and from the shutoff classifications listed in table 10.
- 3. Select desired materials from tables 11, 12, 13, and 14 and figures 24, 25, 26, and 27. The

temperature capabilities determined from figures 24, 25, 26, and 27 may be further limited by the temperature capabilities of materials selected from tables 11, 12, 13, and 14. Refer to figures 24, 25, 26, and 27 to determine pressure drop limits of the body-trim combinations selected.

Inlet pressure and temperature must always be limited by the applicable ASME pressure/ temperature rating. Contact your Emerson Process Management sales office for special materials for temperatures exceeding the following maximum limits: EHD valve [593°C (1100°F)] and the EHT valve [232°C (450°F)].

Table 11. Trim Material Combinations (NPS 1-1/2 x 1 through 6 Globe and NPS 3 through 8 Angle Valves)

DECIONATION	VALVE BUUG	/ALVE BLUG		SEAT RING		OPERATING TEMPERATURE RANGE			
DESIGNATION	VALVE PLUG	CAGE	SEAT RING	RETAINER	Degrees Celsius	Degrees Fahrenheit	SERVICE (NACE)		
		WIT	H STANDARD	CAGE		I.			
50 ⁽¹⁾	S41600 (416 SST) heat-treated ⁽²⁾ S44004 (440C SST) heat-treated for Micro-Flute valve plugs	S17400 (17-4PH SST) H1075 heat- treated	S41600 heat-treated	S17400 H1150 heat-treated chrome coat	-29 to 427	-20 to 800	No		
53 ⁽³⁾ (EHD/ EHAD and EHS/ EHAS valves only)	S31600 (316 SST) with CoCr-A (Alloy 6) seat and guide	CA28MWV (422 SST) nitrided	CoCr-A	N07718 heat-treated chrome coat	427 to 566	800 to 1050	No		
54	S31600 with CoCr-A seat and guide	CF8M (316 SST) chrome coat	CoCr-A	N07718 heat-treated chrome coat	-38 to 593	-100 to 1100	No		
56	S31600 with CoCr-A seat and guide	CF8M ENC	CoCr-A ⁽⁴⁾	S17400 H1150 heat-treated chrome coat	-40 to 149	-40 to 300	Yes		
57 (O-ring seat ring only)	S44004 heat-treated	S17400 H1075 heat-treated	S44004 heat-treated	S17400 H1150 heat-treated chrome coat	0 to 232	32 to 450	No		
	J	WITH C	AVITROL III T	RIM CAGE		ļ.			
58 ⁽¹⁾	S44004 heat-treated	CB7CU-1 H1075 heat-treated	S44004 ⁽⁴⁾	S17400 H1150 heat-treated chrome coat	0 to 232	32 to 450	No		
59	S31600 with CoCr-A seat and guide	CB7CU-1 H1150 heat-treated	CoCr-A ⁽⁴⁾	S17400 H1150 heat-treated chrome coat	-40 to 232	-40 to 450	Yes		
	•	WITH	WHISPER TRIM	III CAGE		•			
60	S41600 heat-treated S17400 (17-4H900 SST) heat-treated for NPS 6 EH and NPS 8 EHA valves	CB7CU-1 H1075 heat-treated	S41600 heat-treated	S17400 H1150 heat-treated chrome coat	-29 to 427	-20 to 800	No		
61	S31600 with CoCr-A seat and guide	CA28MWV nitrided WC9 nitrided for NPS 6 EH and NPS 8 EHA valves	CoCr-A	N00718 heat-treated chrome coat	-29 to 566	-20 to 1050	No		
62	S31600 with CoCr-A seat and guide	CB7CU-1 H1150 heat-treated	CoCr-A ⁽⁴⁾	S17400 H1150 heat-treated chrome coat	-40 to 232	-40 to 450	Yes		

Recommended for boiler feedwater service due to amine problems when using Alloy 6.
 17-4H900 stainless steel heat-treated is used when a diverter cone valve plug is specified for port diameters equal to and larger than 4.375 inches.
 This trim designation not available with the O-ring seat ring gasket construction due to temperature limitations.
 This trim designation uses the O-ring seat ring gasket construction. See table 13 for O-ring temperature limits.

Table 12. Trim Material Combinations (NPS 8 through 14 Fisher® EHD and EHT)

TRIM	VALVE PLUG	VALVE PLUG	CAGE	SEAT RING	SEAT RING		ATING URE RANGE
DESIGNATION		STEM			CAP SCREWS	°C	°F
		EHD	and EHT Valve	with Standard Cage			
75	S42000 (420 SST)	S31600 (316 SST)	CA6NM	S17400 (17-4PH SST) H1075 heat-treated	S17400	-29 to 427	-20 to 800
77	S31600 with CoCr-A (alloy 6) seat and guide	S20910 SST ⁽¹⁾	S31600 chrome coat	S31600 with CoCr-A seat	S66286 (660 SST)	-198 to 593	-325 to 1100
78	S31600 with CoCr-A seat and guide	S20910 chrome coat ⁽¹⁾	S31600 chrome coat	S31600 with CoCr-A seat	S66286	427 to 593	800 to 1100
79	S31600 with CoCr-A seat and guide	S20910	CA6NM chrome coat	N06600 with CoCr-A seat	N07718	-101 to 566	-150 to 1050
80	S31600 with CoCr-A seat and guide	S20910 chrome coat ⁽¹⁾	CA6NM chrome coat	N06600 with CoCr-A seat	N07718	427 to 566	800 to 1050
		EHD and EH	T Valve with Sta	ndard Cage for Sour S	ervice		•
82 ⁽²⁾	S31600 with CoCr-A seat and guide	S20910	S31600 ENC	N06600 with CoCr-A seat	N07718	-29 to 149	-20 to 300
		All	Valves with Whi	sper Trim III Cages			•
95	F22 with CoCr-A seat and guide	S41000 (410 SST) heat treated	WC9/ nitrided	F22 with CoCr-A seat	N07718	-29 to 566	-20 to 1050
96	S17400 with CoCr-A seat and guide	S17400	CB7CU-1 H1075	S17400 with CoCr-A seat	S17400	-62 to 427	-80 to 800
		All Valves v	vith Whisper Tri	n III Cages for Sour Se	ervice		
97	S17400 with CoCr-A seat and guide	S17400	S17400 H1150 ENC	S17400 with CoCr-A seat	S17400	-157 to 343	-250 to 650
Available with 5 This trim design	0.8 mm (2-inch) valve stem co nation is available with O-ring s	onnector only. seat ring gasket constr	ruction only.				

Table 13. Construction Materials and Temperature Capabilities for Parts Other than Body and Trim (NPS 1-1/2 x 1 through 6 Globe and NPS 3 through 8 Angle Valves)

PA	RT	MATERIAL	TEMPERATURE	CAPABILITIES
		MATERIAL	Degrees Celsius	Degrees Fahrenheit
		S31600 (316 stainless steel)	-198 to 427	-325 to 800
Valve plug		S31600 (chromium coating)	427 to 593	800 to 1100
stem		S20910 ⁽¹⁾	-198 to 593	-325 to 1100
		S20910 (chromium coating)	427 to 593	800 to 1100
EHD/EHAD		Graphite (FMS 17F27)	-254 to 427 (to 482 for nonoxidizing service)	-425 to 800 (to 900 for nonoxidizing service)
piston ring		Graphite (FMS 17F39)	-254 to 537 (to 593 for nonoxidizing service)	-425 to 1000 (to 1100 for nonoxidizing service)
EHT/E seal	EHAT ring	N10276 with glass and moly-filled PTFE	-73 to 232	-100 to 450
EHT/E seal ring b		Same as base material of valve plug	See table 11	See table 11
	Backup ring	S41600 (416 SST)	-29 to 427	-20 to 800
Spring- oaded EHT	Retaining ring	S30200 (302 SST) N07750 ⁽¹⁾	-254 to 593	-425 to 1100
valve plug	Seal ring	PTFE with N10276 Spring	-73 to 232 ⁽⁷⁾	-100 to 450 ⁽⁷⁾
Seal Anti-extrusion ring		PEEK (PolyEtherEtherKetone)	(8)	(8)
	-	Silver-plated N04400	-254 to 593	-425 to 1100
Cage gasket	•	Tin-plated N04400 ⁽¹⁾	-29 to 149	-20 to 300
	O minum	Nitrile ⁽⁵⁾	-29 to 107	-20 to 225
	O-ring seat ring	Ethylene-propylene (6)	-40 to 232	-40 to 450
Seat ring	gasket ⁽¹⁾	, , , ,	-23 to 204	-10 to 400
gasket	i iudiocarbon (not for water or steam service)		-254 to 427 (to 593 for nonoxidizing service)	-425 to 800 (to 1100 fo nonoxidizing service)
	Studs Nuts	Steel SA193-B7 (all body materials) Steel SA194-2H (all body materials)	-29 to 427 (WCC, WC9) -46 to 343 (LCC) -48 to 232 (CF8M [316 and 316H])	-20 to 800 (WCC, WCS -50 to 650 (LCC) -55 to 450 (CF8M [316 a 316H])
	Studs Nuts	Steel SA193-B7 (WC9 body mat'l) Steel SA194-7 (WC9 body mat'l)	-29 to 537	-20 to 1000
	Studs Nuts	Steel SA193-B16 (WC9 body mat'ls) Steel SA194-7 (WC9 body mat'ls)	-29 to 593	-20 to 1100
Body-to- bonnet	Studs Nuts	304 stainless steel SA320-B8 (CF8M [316, 316H body mat'ls]) 304 stainless steel SA194-8 (CF8M [316, 316H body mat'ls])	-198 to 38	-325 to 100
bolting ⁽²⁾	Studs Nuts	316 SST SA193-B8M ⁽³⁾ (CF8M [316, 316H body mat'l]) 316 SST SA194-8M (CF8M [316, 316H body mat'l])	-198 to 537	-325 to 1000
	Studs Nuts	316 SST SA193-B8M chrome coat ⁽⁴⁾ (CF8M [316, 316H body mat'ls]) 316 SST SA194-8M (CF8M [316, 316H body mat'ls])	-198 to 593	-325 to 1100
	Studs Nuts	SST SA453-660 Class A (CF8M [316, 316H body mat'ls]) Steel SA194-7 (CF8M [316, 316H body mat'ls])	-29 to 537	-20 to 1000
	Studs Nuts	Steel SA193-B7M for sour service ⁽¹⁾ (CF8M [316 body mat'l]) Steel SA194-2HM for sour service ⁽¹⁾ (CF8M [316 body mat'l])	-46 to 232	-50 to 450
		PTFE V-ring	-40 to 232	-40 to 450
	ļ	Graphite ribbon/filament (oxidizing service to 700°F)	-254 to 537	-425 to 1000
Packing		Graphite ribbon (high-temperature oxidizing service)	371 to 593	700 to 1100
		HIGH-SEAL packing system (see Fisher Bulletin 59.1:061, ENVIRO-SEAL and HIGH-SEAL Packing Systems for Sliding-Stem Valves, for further information)	See bulletin 59.1:061	See bulletin 59.1:061
lanter	ver, spring, or n ring	S31600	-254 to 593	-425 to 1100
Packing	box ring	S31600	-254 to 593	-425 to 1100
Packing flange,		Steel	-29 to 427	-20 to 800
studs, or		S31600	-29 to 593	-20 to 1100

^{1.} Complies with NACE MR0175-2002.
2. Valve body materials with which these bolting materials may be used are shown in parentheses.
3. Class 1 (annealed).
4. Class 2 (strain hardened).
5. For use with all O-ring seat ring constructions without Cavitrol III trim.
6. For use with all O-ring seat ring constructions with Cavitrol III trim.
7. If used with PEEK anti-extrusion rings, PTEE/carbon seal ring may be used up to 316°C (600°F) for non-oxidizing service or up to 260°C (500°F) for oxidizing service.
8. These materials are not limiting factors.

Table 14. Construction Materials and Temperature Capabilities for Parts Other than Body and Trim (NPS 8 through 14 Fisher® EHD and EHT)

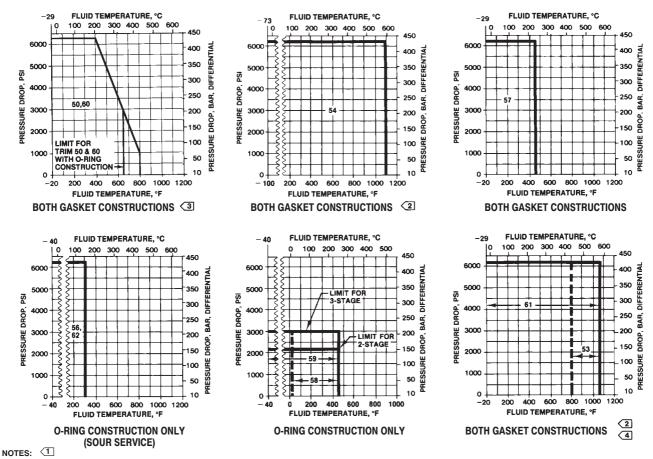
PA	RT	MATERIAL	TEMPERATURE	CAPABILITIES
			°C	°F
	Cage gasket	Silver-plated N04400	-254 to 593	-425 to 1100
	Metal seat ring gasket	Graphite filled spiral wound N06600	-254 to 593	-425 to 1100
Standard gasket construction		Nitrile	-29 to 107	-20 to 225
Construction	O-ring seat ring gasket	Ethylene-propylene	-40 to 232	-40 to 450
		Fluorocarbon	-23 to 204	-10 to 400
	Cage gasket	Tin-plated N04400	-29 to 149	-20 to 300
Sour service		Nitrile	-29 to 107	-20 to 225
gasket construction	O-ring seat ring gasket	Fluorocarbon	-23 to 149	-10 to 300
TID sister vice		Graphite (FMS 17F27)	-46 to 427 (to 482 for nonoxidizing service	-50 to 800 (to 900 for nonoxidizing service)
EHD piston ring		Graphite (FMS 17F39)	-46 to 537 (to 593 for nonoxidizing service)	-50 to 1000 (to 1100 for nonoxidizing service)
EHT seal ring		R30003 (with glass and moly-filled PTFE)	-73 to 232	-100 to 450
EHT seal ring retain	ing ring	S30200 (302 stainless steel)	-254 to 593	-425 to 1100
	Backup ring	S41600 (416 SST)	-29 to 427	-20 to 800
Spring-loaded EHT	Retaining ring	S30200 (302 SST)	-254 to 593	-425 to 1100
valve plug seal	Seal ring	PTFE with N10276 Spring	-73 to 232 ⁽³⁾	-100 to 450 ⁽³⁾
	Anti-extrusion rings	PEEK (PolyEtherEtherKetone)	(4)	(4)
	•	PTFE V-ring	-46 to 232	-50 to 450
		PTFE/composition	-73 to 232	-100 to 450
Packing		Graphite ribbon filament	-18 to 371 (to 538 for nonoxidizing service)	0 to 700 (to 100 for nonoxidizing service)
		Graphite Ribbon (high temperature oxidizing service)	371 to 649	700 to 1200
		HIGH-SEAL (see Bulletin 59.1:061, HIGH-SEAL Finformation)	Packing Systems for Sliding-S	tem Valves for
Packing follower, sp	oring, or lantern ring	S31600 (316 stainless steel)	-254 to 593	-425 to 1100
Dealdre Farret		S17400	-101 to 427	-150 to 800
Packing box ring		S31600	-254 to 593	-425 to 1100

-continued-

Table 14. Construction Materials and Temperature Capabilities for Parts Other than Body and Trim (NPS 8 through 14 Fisher® EHD and EHT) (continued)

PAR	Т	MATER	RIAL	TEMPERATURE CAPABILITIES		
				°C	°F	
	Studs	Steel SA 193-B7	All backy materials	-29 to 427 (steel bodies)	-20 to 800 (steel bodies)	
	Nuts	Steel SA 194-2H	- All body materials	-48 to 232 (SST bodies)	-55 to 450 (SST bodies)	
	Studs	Steel SA 193-B7	WC9 and C5	-29 to 537	-20 to 1000	
	Nuts	Steel SA 194-7	body materials	-29 10 557	-20 10 1000	
	Studs	Steel SA 193-B16	WC9 and C5	00 to 500	00 to 1100	
	Nuts	Steel SA 194-7	body materials	-29 to 593	-20 to 1100	
	Studs	304 Stainless steel SA320-B8	CF8M (316 SST)	-198 to 38	-325 to 100	
	Nuts	316 stainless steel SA194-8	body materials	-198 (0.38	-325 10 100	
	Studs	316 stainless steel SA193-B8M ⁽²⁾	CF8M and CF8M	100 1- 507	-325 to 1000	
Body-to-bonnet bolting ⁽¹⁾	Nuts	316 stainless steel SA194-8M	(316H) body materials	-198 to 537	-323 to 1000	
	Studs	316 stainless steel SA194-B8M	05044	100 1- 107	-325 to 800	
	Nuts	316 stainless steel SA194-B8	-CF8M body materials	-198 to 427		
	Studs	316 stainless steel SA194-B8M chrome coat ⁽²⁾	CF8M body materials	427 to 649	801 to 1200	
	Nuts	316 stainless steel SA194-B8			33.13.200	
	Studs	Steel SA 193-B7M	For sour service	-48 to 232	-55 to 450	
	Nuts	Steel SA 194-2HM	CF8M body material	(SST bodies)	(SST bodies)	
	Studs	Stainless Steel SA453-660 Class A	CF8M	-29 to 537	-20 to 1000	
	Nuts	Steel SA 194-7	body materials			

Table 15. Valve Plug Travel⁽¹⁾ (NPS 8 through 14 Valves)


		EHD, EHT Valve Size, NPS						
CAGE	DDECCUDE DATING							
STYLE	PRESSURE RATING —	8,	10	12,	14			
		mm	Inches	mm	Inches			
Linear	CL1500	76	3	102	4			
	CL2500	64	2.5	76	3			
F 15 (1)	CL1500	76	3	102	4			
Equal Percentage ⁽¹⁾	CL2500	64	2.5	76	3			
Madical Famil Danis (1)	CL1500	89	3.5	114	4.5			
Modified Equal Percentage ⁽¹⁾	CL2500	76	3	89	3.5			
	CL1500	178	7	184	7.25			
Whisper Trim III Cage	CL2500	146	5.75	178	7			

valves us percentage.

Valve body materials with which these bolting materials may be used are shown in parentheses.
 Class 1 (annealed).
 If used with PEEK anti-extrusion rings, PTFE/carbon seal ring may be used up to 316°C (600°F) for non-oxidizing service or up to 260°C (500°F) for oxidizing service.
 These materials are not limiting factors.

Table 16. Flowing Pressure Drop Limits for NPS 6 CL2500 Fisher® EHD/EHT and NPS 8 CL1500 or 2500 EHAD/EHAT Valves (w/o Cavitrol® III or Whisper Trim® III)

				MAXIMUM FLOWING	G PRESSURE	DROP
VALVE PRESSURE	FLOW	STEM SIZE, mm (INCHES)		PSI	Bar	
RATING	MEDIA	STEM SIZE, IIIII (INCITES)	Flowing Down	Flowing up with Diverter Cone	Flowing Down	Flowing up with Diverter Cone
		19.1 mm (3/4 inch)	1000		69	
	All except boiler feedwater	50.8 mm (1-inch)	1000		69	
01.4500		31.7 mm (1-1/4 inch)	2000		138	
CL1500		50.8 x 31.7 mm ⁽¹⁾ (2 x 1-1/4 inch ⁽¹⁾)	3000	3750	207	259
	D ::	31.7 mm (1-1/4 inch)	1000		69	
	Boiler feedwater	50.8 x 31.7 mm ⁽¹⁾ (2 x 1-1/4 inch ⁽¹⁾)	2000	3750	138	259
		19.1 mm (3/4 inch)	1000		69	
01.0500	All except boiler feedwater	50.8 mm (1-inch)	1000		69	
CL2500	leeuwatei	31.7 mm (1-1/4 inch)	2000	6250	138	431
	Boiler feedwater	31.7 mm (1-1/4 inch)	1000	6250	69	431
1. 31.7 mm (1	1-1/4 inch) S20910 stem wi	th 50.8 mm (2-inch) plug to stem connection.	•	•		•

TO FOR RECOMMENDED SERVICE APPLICATIONS, SEE TABLE SHOWN.

O-RING CONSTRUCTION LIMITED TO 232°C (450°F) LAMINATED

GRAPHITE CONSTRUCTION LIMITED TO 427°C (800°F), FOR OXIDIZING

SERVICE AND 593°C (1100°F) FOR NON-OXIDIZING SERVICE.

3 CF8M (316 SST) VALVE BODIES ARE AVAILABLE FOR USE WITH TRIM 60 UP TO 232°C (450°F).

 $\boxed{4}$ CF8M VALVE BODIES ARE AVAILABLE FOR USE WITH TRIM 61 UP TO 232 °C (450 °F).

Figure 25. Pressure/Temperature Limits for Trim Material Combinations (NPS 1-1/2 x 1 through 6 Globe and NPS 3 through 8 Angle Valves) (also see table 16)

B1959-1 / IL

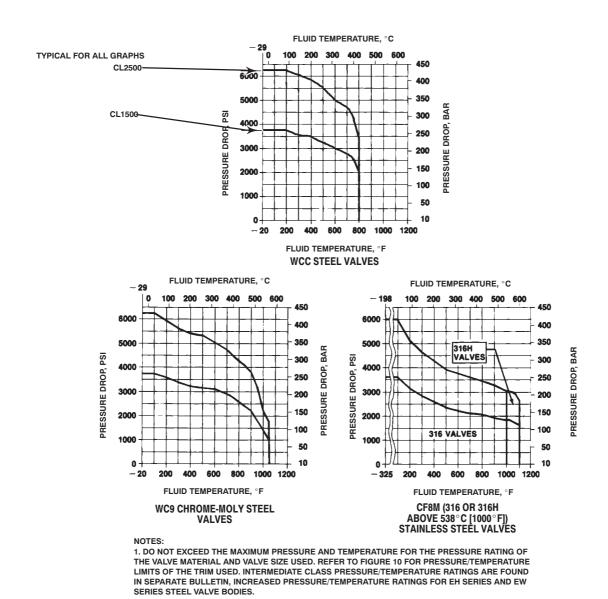


Figure 26. Pressure/Temperature Limits for CL1500 and 2500 Valves (NPS 8 through 14 Valves)

Table 17. Flowing Pressure Drops Limits for Fisher® EHD and EHT Valves (Without Cavitrol® III or Whisper Trim® III) (NPS 8 to 14 Valves)

FLOW MEDIA	VALVE STEM CONNECTOR SIZE	MAXIMUM FLOWING PRESSURE DROP(1) BAR (PSID)								
FLOW MEDIA	mm (inch)	Flowing Down	Flowing Up with Diverter Cone							
All except boiler feedwater	50.8 mm (2-inch)	138 (2000)	259 (3750)							
Boiler feedwater	50.8 mm (2-Inch)	69 (1000)	259 (3750)							
Do not exceed figure 27 material comb	Do not exceed figure 27 material combination pressure drop limits.									

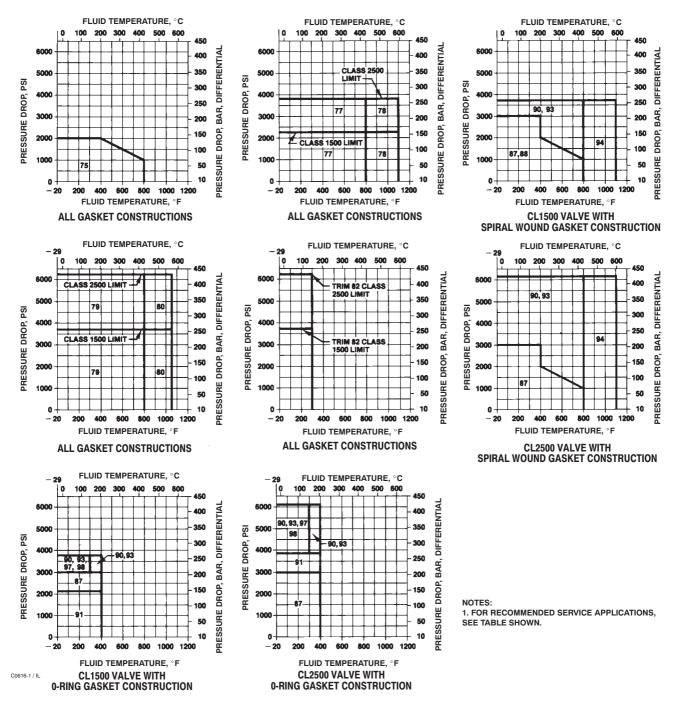


Figure 27. Pressure/Temperature Limits for Trim Material Combinations on CL1500 and 2500 Valves (NPS 8 to 14 Valves) (also see table 17)

Table 18. Additional Globe Valve Specifications (NPS 1-1/2 x 1 through 6 Globe Valves)

VALVE SIZE,	PRESS- URE	FLOW CHARACTERISTIC	VALVE DESIGN		ORT METER		E PLUG AVEL	VALVE STEM D	IAMETER
NPS	RATING		AND PLUG STYLE	mm	Inches	mm	Inches	mm	Inches
				6.4	0.25	19	0.75	12.7	1/2
			EHS w/Micro-Flute	9.5 12.7	0.375 0.5	19 19	0.75 0.75	12.7 12.7	1/2 1/2
		Equal percentage						12.7	1/2
			EHS w/Micro-Form	6.4 12.7	0.25 0.5	19 19	0.75 0.75	12.7	1/2, 3/4
1-1/2 x 1,	CL2500		2.10 11/1110.0 1 01111	19.1	0.75	19	0.75	12.7, 19.1	1/2, 3/4
2 x 1	012300		EHS w/Micro-Form	12.7	0.5	22	0.875	12.7, 19.1	1/2, 3/4
		Modified equal percentage	Ens w/Micro-Form	19.1	0.75	22	0.875	12.7, 19.1	1/2, 3/4
		Modified equal percentage	EHS w/Micro-Flute	9.5	0.375	22	0.75	12.7	1/2
				12.7	0.5	22	0.75	12.7	1/2
		Linear (Cavitrol III, 2-stage)	EHS	15.9	0.625	32	1.25	12.7, 19.1	1/2, 3/4
		Equal percentage	EHS w/Micro-Form	25.4	1	22	0.875	12.7, 19.1, 25.4	1/2, 3/4, 1
		Equal percentage	EHS, EHD, EHT	38.1	1.5	22	0.875	12.7, 19.1 ⁽¹⁾ , 25.4 ⁽¹⁾	1/2, 3/4 ⁽¹⁾ , 1 ⁽¹⁾
	3 x 2 CL2500	Linear (cage style: Whisper Trim III, level A1)	EHS, EHD, EHT	38.1	1.5	38	1.5	12.7, 19.1 ⁽¹⁾ , 25.4 ⁽¹⁾	1/2, 3/4 ⁽¹⁾ , 1 ⁽¹⁾
3 x 2		Linear	EHS, EHD, EHT	38.1	1.5	29	1.125	12.7, 19.1, 25.4	1/2, 3/4, 1
			EHS w/Micro-Form	25.4	1	29	1.125	12.7, 19.1, 25.4	1/2, 3/4, 1
		Modified equal percentage	EHS, EHD, EHT	38.1	1.5	29	1.125	12.7, 19.1 ⁽¹⁾ , 25.4 ⁽¹⁾	1/2, 3/4 ⁽¹⁾ , 1 ⁽¹⁾
		Linear (Cavitrol III, 2-stage)	EHT	31.8	1.25	51	2	12.7, 19.1	1/2, 3/4
		Linear (Cavitrol III, 3-stage)	EHS	15.9	0.625	51	2	12.7, 19.1	1/2, 3/4
		Equal percentage	EHS, EHD, EHT	58.7	2.3125	29	1.125	12.7, 19.1, 25.4	1/2, 3/4, 1
		Modified equal percentage							
3, 4 x 3	CL2500	Linear (cage style: Whisper Trim III, level A1, B1)	EHS, EHD, EHT	58.7	2.3125	38	1.5	12.7, 19.1, 25.4	1/2, 3/4, 1
		Linear (Cavitrol III, 3-stage)	EHT	33.3	1.3125	64	2.5	12.7, 19.1 25.4	1/2, 3/4, 1
		Linear (Cavitrol III, 2-stage)	EHT	47.6	1.875	64	2.5	12.7, 19.1 25.4	1/2, 3/4, 1
		Equal percentage	EHS, EHD, EHT	73	2.875	38	1.5	19.1, 25.4	3/4, 1
		Modified equal percentage							
4, 6 x 4	CL2500	Linear (cage style: Whisper Trim III, level A1, B1, B3)	EHS, EHD, EHT	73	2.875	51	2	19.1, 25.4	3/4, 1
		Linear (Cavitrol III, 3-stage)	EHT	58.7	2.3125	70	2.75	19.1, 25.4	3/4, 1
		Linear (Cavitrol III, 2-stage)	EHT	73	2.875	70	2.75	19.1, 25.4	3/4, 1
		Equal percentage	EHS, EHD, EHT	111.1	4.375	51	2	19.1, 25.4, 31.8	3/4, 1, 1-1/4
		Modified equal percentage	EHS, EHD, EHT	111.1	4.375	76	3	19.1, 25.4, 31.8	0.75, 1, 1.25
6, 8 x 6	CL2500	Linear (cage style: Whisper Trim III, level B3, C3, D3)	EHS, EHD, EHT	111.1	4.375	76	3	25.4, 31.8	1, 1-1/4
		Linear (cage style: Cavitrol III, 2- and 3-stage)	EHT	111.1	4.375	95	3.75	19.1, 25.4, 31.8	3/4, 1, 1-1/4
1. Availabl	le only with E	HS valve body.						-	

Table 19. Additional Angle Valve Specifications (NPS 3 through 8 Angle Valves)

	PRESS- URE	FLOW CHARACTERISTIC	VALVE DESIGN AND	P	ORT METER		E PLUG AVEL	VALVE STEM D	IAMETER
NPS	RATING		PLUG STYLE	mm	Inches	mm	Inches	mm	Inches
		Equal percentage	EHAS w/Micro-Form	31.8 38.1	1.25 1.5	19 29	0.75 1.125	12.7, 19.1, 25.4 12.7, 19.1, 25.4	1/2, 3/4, 1 1/2, 3/4, 1
			EHAS, EHAD, EHAT	47.6	1.875	29	1.125	12.7, 19.1, 25.4 ⁽¹⁾	1/2, 3/4, 1 ⁽¹⁾
		Modified equal percentage	EHAS w/Micro-Form	31.8 38.1	1.25 1.5	25 38	1 1.5	12.7, 19.1, 25.4 12.7, 19.1, 25.4	1/2, 3/4, 1 1/2, 3/4, 1
3	CL1500		EHAS, EHAD, EHAT	47.6	1.875	38	1.5	12.7, 19.1, 25.4 ⁽¹⁾	1/2, 3/4, 1 ⁽¹⁾
	021000	Linear (cage style: Whisper Trim III, level A1)	EHAS, EHAD, EHAT	47.6	1.875	38	1.5	12.7, 19.1, 25.4 ⁽¹⁾	1/2, 3/4, 1 ⁽¹⁾
		Linear (cage style: Cavitrol III, 2-stage)	EHAT	44.5	1.75	51	2	12.7, 19.1	1/2, 3/4
		Linear (cage style: Cavitrol III, 3-stage)	EHAT	25.4	1	51	2	12.7, 19.1	1/2, 3/4
	Equal percentage		EHAS, EHAD, EHAT	73	2.875	38	1.5	12.7, 19.1, 25.4	1/2, 3/4, 1
		Modified equal percentage							
4	4 CL1500	Linear (cage style: Whisper Trim III, level A1, B1)	EHAS, EHAD, EHAT	73	2.875	51	2	12.7, 19.1, 25.4	1/2, 3/4, 1
		Linear (cage style: Cavitrol III, 3-stage)	EHAT	47.6	1.875	64	2.5	12.7, 19.1, 25.4	1/2, 3/4, 1
		Linear (cage style: Cavitrol III, 2-stage)	EHAT	64	2.5	64	2.5	12.7, 19.1, 25.4	1/2, 3/4, 1
		Equal percentage	EHAS, EHAD, EHAT	92.1	3.625	38	1.5	19.1, 25.4	3/4, 1
		Modified equal percentage		92.1	3.625	51	51 2		
		Linear (cage style: Whisper Trim III, level A1, B3, C3)	EHAS, EHAD, EHAT					19.1, 25.4	3/4, 1
6	CL1500	Linear (cage style: Whisper Trim III, level D3)	EHAS, EHAD, EHAT	73	2.875	51	2	19.1, 25.4	3/4, 1
		Linear (cage style: Cavitrol III, 3-stage)	EHAT	73	2.875	76	3	19.1, 25.4	3/4, 1
		Linear (cage style: Cavitrol III, 2-stage)	EHAT	87.3	3.4375	76	3	19.1, 25.4	3/4, 1
		Equal percentage	EHAS, EHAD, EHAT	136.5	5.375	64	2.5	19.1, 25.4, 31.8	3/4, 1, 1-1/4
		Modified equal percentage	EHAS, EHAD, EHAT	136.5	5.375	76	3	19.1, 25.4, 31.8	3/4, 1, 1-1/4
		Linear (cage style: Whisper Trim III, level A1, B3, C3)	EHAS, EHAD, EHAT	136.5	5.375	76	3	25.4, 31.8	1, 1-1/4
8	CL1500	Linear (cage style: Whisper Trim III, level D3)	EHAS, EHAD, EHAT	111.1	4.375	76	3	19.1, 25.4, 31.8	3/4, 1, 1-1/4
		Linear (cage style: Cavitrol III, 3-stage)	EHAT	115.9	4.5625	102	4	19.1, 25.4, 31.8	3/4, 1, 1-1/4
		Linear (cage style: Cavitrol III, 2-stage)	EHAT	133.4	5.25	102	4	19.1, 25.4, 31.8	3/4, 1, 1-1/4
1. Availab	le only with E	HAS valve body.							

Table 20. Globe Valve Yoke Boss and Valve Stem Diameter Combinations⁽¹⁾ (NPS 1-1/2 x 1 through 6 Globe Valves)

		STANDARD D	DIAMETERS		OPTIONAL DIAMETERS				
VALVE SIZE, NPS	mm		Inches		l	mm	Inches		
	Stem	Yoke Boss	Stem	Yoke Boss	Stem	Yoke Boss	Stem	Yoke Boss	
1-1/2 x 1, 2 x 1	12.7	71	1/2	2-13/16	19.1	90	3/4	3-9/16	
3 x 2	12.7 19.1	71 90	1/2 3/4	2-13/16 3-9/16	25.4	127	1	5	
3, 4 x 3	19.1	90	3/4	3-9/16	12.7 25.4	71 127	1/2 1	2-13/16 5	
4, 6 x 4	19.1	90	3/4	3-9/16	25.4	127	1	5	
6, 8 x 6	25.4 31.8	127 127	1 1-1/4	5 5H	19.1	90	3/4	3-9/16	
1. See table 18 for valve st	em diameters ava	ilable for specific const	truction.					•	

Table 21. Angle Valve Yoke Boss and Valve Stem Diameter Combinations⁽¹⁾ (NPS 3 through 8 Angle Valves)

ANGLE		STANDARD I	DIAMETERS		OPTIONAL DIAMETERS				
VALVE SIZE,	m	mm		Inches		mm	Inches		
NPS	Stem	Yoke Boss	Stem	Yoke Boss	Stem	Yoke Boss	Stem	Yoke Boss	
3	12.7	71	1/2	2-13/16	19.1 25.4	90 127	3/4 1	3-9/16 5	
4	19.1	90	3/4	3-9/16	12.7 25.4	71 127	1/2 1	2-13/16 5	
6	19.1	90	3/4	3-9/16	25.4	127	1	5	
8	25.4	127	1	5	19.1	90	3/4	3-9/16	
1. See table 19 fo	r valve stem diamete	ers available for specifi	c construction.	•		•		•	

Table 22. Approximate Weights (Valve and Bonnet Assemblies) (NPS 1-1/2 x 1 through 6 Globe and NPS 3 through 8 Angle Valves)

		GLOBE \	VALVES			ANGLE V	/ALVES		
		CL2	500		CL1500				
VALVE SIZE, NPS	Kilo	grams	Po	unds	Kilo	grams	Po	unds	
	Flg	SWE and BWE	Flg	SWE and BWE	Flg	SWE and BWE	Flg	SWE and BWE	
1-1/2 x 1		46		101					
2 x 1	78	47	173	104					
3 x 2	161	94	355	207					
3	223	163	492	359	123	78	272	173	
4 x 3	265	162	585	357					
4	338	243	745	536	181	117	399	258	
6 x 4	526	257	1160	567					
6	785	544	1731	1199	357	202	788	445	
8 x 6	955	558	2106	1231					
8					648	405	1428	893	

Table 23. Approximate Weights (Valve Assembly and Bonnet) (NPS 8 through 14 Valves)

				WEI	GHTS						
VALVE		CL1	1500		CL2500						
SIZE, NPS	BV	/E	FL	.G	BV	VE	FL	.G			
111 0	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds			
8	1400	3100	1700	3700	1900	4100	2200	4700			
10	1500	3300	1900	4100	2000	4400					
12	3400	7300	3900	8600	3400	7600					
14	3400	7300			3400	7600					

March 2009

Table 24. NPS 1-1/2 x 1 through 6 Globe Valve Dimensions with Standard Bonnet

/ALVE SIZE NPS		CL2	2500	
	BWE	SWE	RF	RTJ
		mm		
1-1/2 x 1	318	318	337	340
2 x 1	318	318	349	353
3 x 2	400		435	442
3	498		498	505
4 x 3	498		518	527
4	575		575	584
6 x 4	575		660	673
6	819		819	832
8 x 6	819		857	873
		Inches		
1-1/2 x 1	12.50	12.50	13.25	13.38
2 x 1	12.50	12.50	13.75	13.88
3 x 2	15.75		17.12	17.38
3	19.62		19.62	19.88
4 x 3	19.62		20.38	20.75
4	22.62		22.62	23.00
6 x 4	22.62		26.00	26.50
6	32.25		32.25	32.75
8 x 6	32.25		33.75	34.38

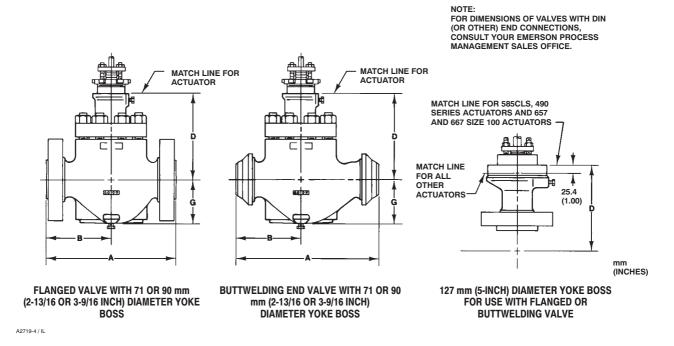


Figure 28. NPS 1-1/2 x 1 through 6 Globe Valve Dimensions with Standard Bonnet (also see tables 24, 25, and 26)

Table 25. NPS 1-1/2 x 1 through 6 Globe Valve Dimensions with Standard Bonnet

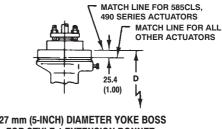
/ALVE SIZE NPS		CL2	2500	
	BWE	SWE	RF	RTJ
		mm		
1-1/2 x 1	159	159	168	170
2 x 1	159	159	175	176
3 x 2	200		217	221
3	249		249	253
4 x 3	249		259	264
4	273		273	278
6 x 4	273		325	331
6	397		397	403
8 x 6	397		416	424
		Inches		
1-1/2 x 1	6.25	6.25	6.62	6.69
2 x 1	6.25	6.25	6.88	6.94
3 x 2	7.88		8.56	8.69
3	9.81		9.81	9.94
4 x 3	9.81		10.19	10.38
4	10.75		10.75	10.94
6 x 4	10.75		12.81	13.06
6	15.62		15.62	15.88
8 x 6	15.62		16.38	16.69

Table 26. NPS 1-1/2 x 1 through 6 Globe Valve Dimensions with Standard Bonnet

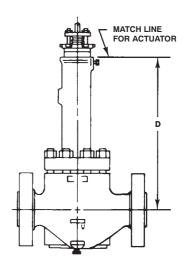
	G		D							
VALVE			CL2500							
SIZE NPS	CL2500	Yok	e Boss Diameters, mm (Inch	es)						
141 5		71 (2-13/16)	90 (3-9/16)	127 (5)						
		mm								
1-1/2 x 1	78	249	256							
2 x 1	78	249	256							
3 x 2	108	303	310	343						
3	145	335	335	371						
4 x 3	145	335	335	371						
4	168		348	406						
6 x 4	168		348	406						
6	229		408	445						
8 x 6	229		408	445						
		Inches								
1-1/2 x 1	3.06	9.81	10.06							
2 x 1	3.06	9.81	10.06							
3 x 2	4.35	11.94	12.19	13.50						
3	5.69	13.19	13.19	14.62						
4 x 3	5.69	13.19	13.19	14.62						
4	6.62		13.69	16.00						
6 x 4	6.62		13.69	16.00						
6	9.00		16.06	17.50						
8 x 6	9.00		16.06	17.50						

March 2009

Table 27. Dimension D for Style 1 Extension Bonnet (A, B, and G Dimensions Listed in Figure 28 Do Not Change When Extension Bonnet is Used


GLOBE		D								
VALVE SIZE,	PRESSURE RATING	Yoke Boss Diameter, mm (Inches)								
NPS	HATING	71 (2-13/16)	90 (3-9/16)	127 (5)						
		mm								
1-1/2 x 1 and 2 x 1	CL2500	391	406							
3 x 2	CL2500	427	443	502						
		Inches								
1-1/2 x 1 and 2 x 1	CL2500	15.38	16.00							
3 x 2	CL2500	16.81	17.44	19.75						

Installation


The valve must be installed so flow through the valve matches the flow direction arrow on the valve body. Consideration should be given to installing an upstream strainer, especially if the valve uses a multi-orifice Whisper Trim III or Cavitrol III cage.

For NPS 8 and larger valves, the recommended installation position is with the valve in a horizontal pipeline and the actuator vertical above the valve. Other orientations may result in shortened trim life and difficulty with field maintenance.

Overall dimensions are shown in figures 28, 29, 30, 31, and 32. Face-to-face dimensions are in compliance with ANSI/ISA-S75 for valves smaller than NPS 8. For NPS 8 and larger valves, face-to-face dimensions are longer than industry standards for valves of this size and rating. Actual end connection dimensions conform to ASME B16.25 for buttwelding ends and to ASME B16.5 for flanged ends.

127 mm (5-INCH) DIAMETER YOKE BOSS FOR STYLE 1 EXTENSION BONNET

FLANGED VALVE WITH STYLE 1 EXTENSION BONNET HAVING 71 OR 90 mm (2-13/16 OR 3-9/16 INCH) DIAMETER **YOKE BOSS**

Figure 29. Dimension D for Style 1 Extension Bonnet (A, B, and G Dimensions Listed in Figure 28 Do Not Change When Extension Bonnet is Used) (also see table 27)

Table 28. NPS 3 through 8 Angle Valve CL1500 Dimensions with Standard Bonnet and Style 1 Extension Bonnet

		Α,	mm)				
VALVE						Std. Bonnet			Ext. Bonnet			
SIZE, NPS					Ste	m Diameter,	mm	Stem Diameter, mm				
	BWE	SWE	RF	RTJ	1/2	3/4	1, 1-1/4	1/2	3/4	1		
3	235		235	237	259	265	329	427	443	502		
4	273		273	275	287	278	338					
6	353		353	356		302	380					
8	416		416	421		367	403	03				
				•	Inches							
3	9.25		9.25	9.31	10.19	10.44	12.94	16.81	17.44	19.75		
4	10.75		10.75	10.81	11.31	10.94	13.31					
6	13.88		13.88	14.00		11.88	14.56					
8	16.38		16.38	16.56		14.44	15.88					

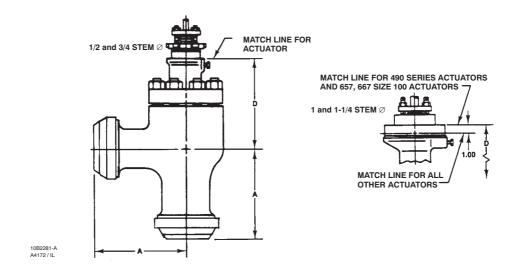


Figure 30. NPS 3 through 8 Angle Valve CL1500 Dimensions with Standard Bonnet and Style 1 Extension Bonnet (also see table 28)

Table 29. Dimensions (NPS 8 through 14 Fisher® EHD and EHT Valves)

VALVE				A(1,2)				
SIZE,	CL	.900		CL1500			CL2500		
NPS	RF	RTJ	BWE	RF	RTJ	BWE	RF	RTJ	
				mm					
8	1137	1140	1194	1194	1203	1295	1295	1311	
10	1168	1172	1245	1245	1254	1346			
12	1715	1718	1803	1803	1819	1778			
14	1727	1739	1829			1803			
				Inches					
8	44.75	44.88	47.00	47.00	47.38	51.00	51.00	51.62	
10	46.00	46.13	49.00	49.00	49.38	53.00			
12	67.50	67.62	71.00	71.00	71.62	70.00			
14	68.00	68.38	72.00			71.00			
VALVE				B (1,2)				
SIZE,	CL	.900		CL1500			CL2500		
NPS			BWE	RF	RTJ	BWE	RF R		
				mm					
8	429	430	457	457	462	508	508	516	
10	445	446	483	483	487	533			
12	794	795	838	838	846	838			
14	800	805	851			851			
•		•	•	Inches	•	•	•	•	
8	16.88	16.94	18.00	18.00	18.19	20.00	20.00	20.31	
10	17.50	17.56	19.00	19.00	19.19	21.00			
12	31.25	31.31	33.00	33.00	33.31	33.00			
14	31.50	31.69	33.50			33.50			

Table 30. Dimensions (NPS 8 through 14 Fisher® EHD and EHT Valves)

	/							
VALVE)	G					
SIZE, NPS	CL900 and 1500	CL2500	CL900 and 1500	CL2500				
		mm						
8, 10	684	665	363	370				
12, 14	702	724	452	437				
		Inches						
8, 10	26.94	26.19	14.31	14.56				
12, 14	27.62	28.50	17.81	17.19				

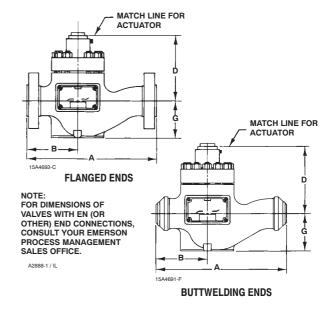


Figure 31. Dimensions (NPS 8 through 14 Fisher® EHD and EHT Valves) (also see tables 29 and 30)

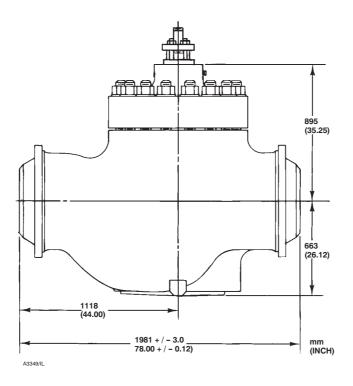


Figure 32. Dimensions (NPS 20 Fisher® EHD Valve)

Coefficients

Table 31. Fisher® EHD, CL900 and 1500, Linear and Equal Percentage Cages

Line	ar -	Flow	Do	wn											Charac	Linear teristic
Valve Size,	Port D	iameter	-	dimum avel	Flow Coeffi-			Va	ve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
NPS	mm	Inches	mm	Inches	cient 10 20 30 40 50 60 70 80 90								100	<u> </u>		
					C _v	105	212	332	458	578	689	788	878	954	1020	0.82
8 & 10	177.8	7	76	3	K_{V}	90.8	183	287	396	500	596	682	759	825	882	
					X _T	0.591	0.676	0.661	0.653	0.633	0.620	0.624	0.622	0.614	0.592	
					C _v	211	390	593	804	1010	1240	1460	1660	1830	1970	0.80
12 & 14	254.0	10	102	4	K_{V}	183	337	513	695	874	1073	1263	1436	1583	1704	
					X _T	0.443	0.652	0.669	0.664	0.671	.0653	0.662	0.669	0.658	0.629	
Equa	al Pe	ercen	tag	e - F	low D	own								Equ	ual Perc Charac	
					C _v	32.5	59.6	85.3	114	159	229	334	468	619	755	0.85
8 & 10	177.8	7	76	3	K_{V}	28.1	51.6	73.8	98.6	138	198	289	405	535	653	
					X _T	0.969	0.939	0.842	0.944	0.840	0.731	0.641	0.633	0.639	0.639	
					C _v	81.3	143	207	286	382	557	752	1000	1290	1570	0.82
12 & 14	254.0	10	102	4	K_{V}	70.3	124	179	247	330	482	650	865	1116	1358	
					X _T	0.689	0.581	0.579	0.557	0.606	0.582	0.647	0.644	0.616	0.596	
1. At 1009	% travel.					•		•	•				•			•

Notes: The coefficients on this page are also appropriate for the EHT Valve.

Table 32. Fisher® EHD, CL900 and 1500, Equal Percentage Cages

Modi	ified	Equ	al F	erce	ntage	- Fl	ow D	own	1				Modi	ified Equ	ual Perc Charac	
												F _L ⁽¹⁾				
NPS	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	_
					C _v	38.3	70.2	103	145	216	324	495	684	844	912	0.85
8 & 10	177.8	7	89	3.5	K_{V}	33.1	60.7	89.1	125	187	280	428	592	730	789	
					X _T	0.946	0.891	0.910	0.835	0.744	0.669	0.669	0.664	0.668	0.667	
					C _v	95.9	156	229	313	487	710	988	1280	1610	1830	0.83
12 & 14	254.0	10	114	4.5	K_{V}	83.0	135	198	271	421	614	855	1107	1393	1583	
					X _T	0.579	0.607	0.561	0.618	0.577	0.617	0.576	0.620	0.610	0.611	
1. At 100°	% travel.															

Notes: The coefficients on this page are also appropriate for the EHT Valve.

Table 33. Fisher® EHD, CL2500, Linear and Equal Percentage Cages

Line	ar -	Flow	Do	wn											Charac	Linea teristi
Valve Size,	Port D	Diameter		imum avel	Flow Coeffi-			Val	ve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
NPS	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	
					C _v	1.44	3.39	9.44	15.2	20.5	25.0	29.0	32.3	34.9	36.1	0.93
2 & 3 x 2	38.1	1.5	29	1.125	K_{V}	1.25	2.93	8.17	13.1	17.7	21.6	25.1	27.9	30.2	31.2	
					X _T	0.718	0.612	0.566	0.605	0.648	0.697	0.727	0.740	0.740	0.735	
					C _v	2.77	13.2	31.0	47.4	59.7	68.7	75.5	80.6	83.9	85.9	0.9
3 & 4 x 3	58.7	2.3125	38	1.5	K_{V}	2.40	11.4	26.8	41.0	51.6	59.4	65.3	69.7	72.6	74.3	
					X _T	0.685	0.574	0.612	0.668	0.714	0.731	0.735	0.718	0.701	0.706	
					C _v	2.99	17.4	38.1	57.8	78.8	100	119	130	136	139	0.8
4 & 6 x 4	73.0	2.875	51	2	K _V	2.59	15.1	33.0	50.0	68.2	86.5	103	112	118	120	
					X _T	0.757	0.624	0.570	0.533	0.559	0.632	0.681	0.706	0.697	0.689	
					C _v	17.5	38.9	86.1	141	195	241	274	293	301	309	0.8
6 & 8 x 6	111.1	4.375	76	3	K _V	15.1	33.6	74.5	122	169	208	237	253	260	267	
					X _T	0.187	0.624	0.548	0.559	0.597	0.640	0.681	0.697	0.689	0.681	
					C _v	75.1	140	212	289	366	435	495	547	590	621	0.8
8 & 10	136.5	5.375	64	2.5	K _v	65.0	121	183	250	317	376	428	473	510	537	
					X _T	0.772	0.833	0.840	0.779	0.741	0.733	0.729	0.715	0.704	0.688	
					C _v	104	229	369	477	587	691	804	906	981	1030	0.8
		1						242	440	500	500	COF	704	849	891	-
12 & 14	177.8	7	76	3	K_{V}	90.0	198	319	413	508	598	695	784	049	091	
12 & 14 Equ a	177.8				κ _ν × _T	0.406	0.476	0.478	0.523	0.543	0.561	0.552	0.547	0.558	0.584 ual Perc Charac	 enta
Equa	al Pe		ntag		X _T low D	0.406	0.476	0.478		0.543	0.561	0.552	0.547	0.558	0.584 ual Perc	entag
Equa	al Pe	ercer	ntag	e - F	x _T	0.406	0.476	0.478	0.523	0.543	0.561	0.552	0.547	0.558	0.584 ual Perc	entag
Equa Valve Size,	Port C	ercer	ntag Max Tr	e - F	X _T low D Flow Coeffi-	0.406 OWN	0.476	0.478 Va l	0.523	0.543	0.561	0.552	0.547 vel	0.558 Eq i	0.584 ual Perc Charac	entag teris
Valve Size, NPS	Port C	ercer	ntag Max Tr	e - F	X _T low D Flow Coefficient	0.406 OWN	0.476	0.478 Val	0.523 ve Open	0.543 ing—Pe 50	0.561	0.552 Total Tra	0.547 vel 80	0.558 Eq i	0.584 ual Perc Charac	entag terist
Valve Size, NPS	Port C	ercer Diameter	Max Tr mm	e - F	X _T IOW D Flow Coefficient C _V	0.406 OWN 10 1.25	0.476 20 1.36	0.478 Val 30 2.47	0.523 ve Open 40 4.14	0.543 ing—Pe 50 6.33	0.561 rcent of 60 9.48	0.552 Total Tra 70 13.8	0.547 vel 80 18.7	0.558 Equ 90 23.1	0.584 ual Perc Charac	entag teris
Valve Size, NPS	Port C	ercer Diameter	Max Tr mm	e - F	X _T Flow Coefficient C _V K _V	0.406 OWN 10 1.25 1.08	0.476 20 1.36 1.18	0.478 Val 30 2.47 2.14	0.523 ve Open 40 4.14 3.58	0.543 ing—Pe 50 6.33 5.48	0.561 rcent of 7 60 9.48 8.20	0.552 Total Tra 70 13.8 11.9	0.547 vel 80 18.7 16.2	90 23.1 20.0	0.584 ual Perc Charac 100 27.0 23.4	entag terist
Valve Size, NPS	Port C	ercer Diameter	Max Tr mm	e - F	Flow Coefficient C _V K _V X _T	0.406 OWN 10 1.25 1.08 0.766	20 1.36 1.18 0.761	Val 30 2.47 2.14 0.608	0.523 ve Open 40 4.14 3.58 0.589	0.543 ing—Pe 50 6.33 5.48 0.601	0.561 rcent of 60 9.48 8.20 0.601	70 13.8 11.9 0.593	0.547 vel 80 18.7 16.2 0.605	90 23.1 20.0 0.660	0.584 ual Perc Charact 100 27.0 23.4 0.735	 entag terist F _L (0.9 0.9
Valve Size, NPS	Port C	Prcer Diameter Inches	Max Tr mm	e - F	Flow Coefficient C _V K _V X _T	0.406 OWN 10 1.25 1.08 0.766 1.73	0.476 20 1.36 1.18 0.761 2.77	Val 30 2.47 2.14 0.608 5.34	0.523 ve Open 40 4.14 3.58 0.589 9.70	0.543 ing—Pe 50 6.33 5.48 0.601 15.6	0.561 rcent of 60 9.48 8.20 0.601 23.3	70 13.8 11.9 0.593 33.7	0.547 vel 80 18.7 16.2 0.605 46.2	90 23.1 20.0 0.660 56.8	0.584 ual Perc Charac 100 27.0 23.4 0.735 65.3	 entag terist F _L (0.9 0.9
Equa Valve Size,	Port C	Prcer Diameter Inches	Max Tr mm	e - F	$\begin{array}{c} X_T \\ \textbf{low D} \\ \hline \\ \textbf{Flow Coefficient} \\ \hline \\ C_V \\ \hline \\ K_V \\ \hline \\ X_T \\ \hline \\ C_V \\ \hline \\ K_V \\ \end{array}$	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50	20 1.36 1.18 0.761 2.77 2.40	Val 30 2.47 2.14 0.608 5.34 4.62	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 13.5	0.561 rcent of 60 9.48 8.20 0.601 23.3 20.2	0.552 Total Tra 70 13.8 11.9 0.593 33.7 29.2	0.547 vel 80 18.7 16.2 0.605 46.2 40.0	90 23.1 20.0 0.660 56.8 49.1	0.584 ual Perc Charac 100 27.0 23.4 0.735 65.3 56.5	
Valve Size, NPS	Port C	Prcer Diameter Inches	Max Tr mm	e - F	$\begin{array}{c} X_T \\ \hline {\textbf{low D}} \\ \hline \\ \begin{matrix} \textbf{Flow Coefficient} \\ \hline \\ C_V \\ K_V \\ X_T \\ \hline \\ C_V \\ K_V \\ X_T \\ \end{matrix}$	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870	20 1.36 1.18 0.761 2.77 2.40 0.710	Val 30 2.47 2.14 0.608 5.34 4.62 0.605	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 13.5 0.616	0.561 rcent of 60 9.48 8.20 0.601 23.3 20.2 0.648	70 13.8 11.9 0.593 33.7 29.2 0.640	0.547 vel 80 18.7 16.2 0.605 46.2 40.0 0.632	90 23.1 20.0 0.660 56.8 49.1 0.668	0.584 ual Perc Charac 100 27.0 23.4 0.735 65.3 56.5 0.748	0.9 0.9 0.9
Valve Size, NPS	Port E mm 38.1	Diameter Inches 1.5	Max Tr mm	e - F timum avel Inches 0.875	$\begin{array}{c} X_T \\ \textbf{low D} \\ \hline \\ \textbf{Flow Coefficient} \\ \hline \\ C_V \\ K_V \\ X_T \\ C_V \\ K_V \\ X_T \\ C_V \\ \end{array}$	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870 2.57	20 1.36 1.18 0.761 2.77 2.40 0.710 6.53	Val 30 2.47 2.14 0.608 5.34 4.62 0.605 10.0	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581 12.5	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 13.5 0.616 17.3	0.561 rcent of 60 9.48 8.20 0.601 23.3 20.2 0.648 25.1	70 13.8 11.9 0.593 33.7 29.2 0.640 33.8	0.547 vel 80 18.7 16.2 0.605 46.2 40.0 0.632 42.8	90 23.1 20.0 0.660 56.8 49.1 0.668 59.6	0.584 ual Perc Charac 100 27.0 23.4 0.735 65.3 56.5 0.748 81.1	entag terist
Valve Size, NPS	Port E mm 38.1	Diameter Inches 1.5	Max Tr mm	e - F timum avel Inches 0.875	$\begin{array}{c} X_T \\ \textbf{low D} \\ \hline \\ \textbf{Flow Coefficient} \\ C_V \\ K_V \\ X_T \\ C_V \\ K_V \\ X_T \\ C_V \\ K_V \\ X_T \\ C_V \\ K_V \\ \end{array}$	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870 2.57 2.22	20 1.36 1.18 0.761 2.77 2.40 0.710 6.53 5.65	Val 30 2.47 2.14 0.608 5.34 4.62 0.605 10.0 8.65	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581 12.5 10.8	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 13.5 0.616 17.3 15.0	0.561 rcent of 60 9.48 8.20 0.601 23.3 20.2 0.648 25.1 21.7	70 13.8 11.9 0.593 33.7 29.2 0.640 33.8 29.2	0.547 vel 80 18.7 16.2 0.605 46.2 40.0 0.632 42.8 37.0	90 23.1 20.0 0.660 56.8 49.1 0.668 59.6 51.6	0.584 ual Perc Characi 100 27.0 23.4 0.735 65.3 56.5 0.748 81.1 70.2	entag terisi F _L (0.9 0.9 0.8
Valve Size, NPS 2 & 3 × 2 3 & 4 × 3	Port E mm 38.1 58.7 73.0	Diameter Inches 1.5 2.3125 2.875	Max Tr mm	e - F timum avel Inches 0.875	$\begin{array}{c} X_T \\ \textbf{low D} \\ \hline \\ \textbf{Flow Coefficient} \\ C_V \\ \mathcal{K}_V \\ X_T \\ \end{array}$	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870 2.57 2.22 0.783	20 1.36 1.18 0.761 2.77 2.40 0.710 6.53 5.65 0.585	Val 30 2.47 2.14 0.608 5.34 4.62 0.605 10.0 8.65 0.589	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581 12.5 10.8 0.597	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 13.5 0.616 17.3 15.0 0.566	0.561 cent of 60 9.48 8.20 0.601 23.3 20.2 0.648 25.1 21.7 0.533	70 13.8 11.9 0.593 33.7 29.2 0.640 33.8 29.2 0.518	0.547 vel 80 18.7 16.2 0.605 46.2 40.0 0.632 42.8 37.0 0.526	90 23.1 20.0 0.660 56.8 49.1 0.668 59.6 51.6 0.526	0.584 ual Perc Charac 100 27.0 23.4 0.735 65.3 56.5 0.748 81.1 70.2 0.537	entagterist FL(0.9 0.9 0.8 0.8
Valve Size, NPS 2 & 3 × 2 3 & 4 × 3	Port E mm 38.1 58.7 73.0	Diameter Inches 1.5 2.3125 2.875	Max Tr mm 22 29	e - F cimum avel Inches 0.875 1.125	$\begin{array}{c} X_T \\ \textbf{low D} \\ \hline \\ \textbf{Flow} \\ \textbf{Coefficient} \\ C_V \\ K_V \\ X_T \\ C_V \\ C_V \\ \end{array}$	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870 2.57 2.22 0.783 3.07	20 1.36 1.18 0.761 2.77 2.40 0.710 6.53 5.65 0.585 9.29	Val 30 2.47 2.14 0.608 5.34 4.62 0.605 10.0 8.65 0.589 17.8	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581 12.5 10.8 0.597 24.5	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 13.5 0.616 17.3 15.0 0.566 35.6	0.561 rcent of ' 60 9.48 8.20 0.601 23.3 20.2 0.648 25.1 21.7 0.533 59.7	70 13.8 11.9 0.593 33.7 29.2 0.640 33.8 29.2 0.518 98.7	0.547 vel 80 18.7 16.2 0.605 46.2 40.0 0.632 42.8 37.0 0.526 141	90 23.1 20.0 0.660 56.8 49.1 0.668 59.6 51.6 0.526	0.584 ual Perc Characi 100 27.0 23.4 0.735 65.3 56.5 0.748 81.1 70.2 0.537 217	entagterist F _L (0.9 0.9 0.9 0.8 0.8
Valve Size, NPS 2 & 3 × 2 3 & 4 × 3	Port E mm 38.1 58.7 73.0	Diameter Inches 1.5 2.3125 2.875	Max Tr mm 22 29	e - F cimum avel Inches 0.875 1.125	$ \begin{array}{c c} X_T \\ \hline \textbf{Flow} & \textbf{D} \\ \hline \textbf{Flow} & \textbf{Coefficient} \\ \hline C_V & & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ K_$	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870 2.57 2.22 0.783 3.07 2.66	0.476 20 1.36 1.18 0.761 2.77 2.40 0.710 6.53 5.65 0.585 9.29 8.04	Val 30 2.47 2.14 0.608 5.34 4.62 0.605 10.0 8.65 0.589 17.8 15.4	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581 12.5 10.8 0.597 24.5 21.2	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 17.3 15.0 0.566 35.6 30.8	0.561 rcent of ' 60 9.48 8.20 0.601 23.3 20.2 0.648 25.1 21.7 0.533 59.7 51.6	0.552 Total Tra 70 13.8 11.9 0.593 33.7 29.2 0.640 33.8 29.2 0.518 98.7 85.4	0.547 vel 80 18.7 16.2 0.605 46.2 40.0 0.632 42.8 37.0 0.526 141 122	90 23.1 20.0 0.660 56.8 49.1 0.668 59.6 51.6 0.526 188 163	0.584 ual Perc Characi 100 27.0 23.4 0.735 65.3 56.5 0.748 81.1 70.2 0.537 217 188	
Valve Size, NPS	Port E mm 38.1 58.7 73.0	Diameter Inches 1.5 2.3125 2.875	Max Tr mm 22 29	e - F cimum avel Inches 0.875 1.125	$ \begin{array}{c c} X_T \\ \hline \textbf{Flow} & \textbf{D} \\ \hline \textbf{Flow} & \textbf{Coefficient} \\ \hline C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ K_V & \\ X_T & \\ C_V & \\ $	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870 2.57 2.22 0.783 3.07 2.66 0.922	0.476 20 1.36 1.18 0.761 2.77 2.40 0.710 6.53 5.65 0.585 9.29 8.04 0.723	Val 30 2.47 2.14 0.608 5.34 4.62 0.605 10.0 8.65 0.589 17.8 15.4 0.620	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581 12.5 10.8 0.597 24.5 21.2 0.660	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 17.3 15.0 0.566 35.6 30.8 0.640	0.561 rcent of ' 60 9.48 8.20 0.601 23.3 20.2 0.648 25.1 21.7 0.533 59.7 51.6 0.555	70 13.8 11.9 0.593 33.7 29.2 0.640 33.8 29.2 0.518 98.7 85.4 0.529	vel 80 18.7 16.2 0.605 46.2 40.0 0.632 42.8 37.0 0.526 141 122 0.578	90 23.1 20.0 0.660 56.8 49.1 0.668 59.6 51.6 0.526 188 163 0.559	0.584 ual Perc Charac 27.0 23.4 0.735 65.3 56.5 0.748 81.1 70.2 0.537 217 188 0.640	entage FL(0.9 0.9 0.8 0.8 0.8 0.8
Valve Size, NPS 2 & 3 × 2 3 & 4 × 3 4 & 6 × 4	Port E mm 38.1 58.7 73.0 111.1	Inches 1.5 2.3125 2.875 4.375	1tag Max Tr mm 22 29 38 51	e - F timum avel Inches 0.875 1.125 2	$ \begin{array}{c c} X_T \\ \hline {\textbf{Flow}} & \\ \hline {\textbf{Coefficient}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{C}_{\text{V}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{C}_{\text{V}}} \\ \hline \\ \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{C}_{\text{V}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline \\ \hline \\ \hline {\textbf{X}_{\text{T}}} \\ \hline \\ \hline \\ \hline \\ \hline {$	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870 2.57 2.22 0.783 3.07 2.66 0.922 19.8	20 1.36 1.18 0.761 2.77 2.40 0.710 6.53 5.65 0.585 9.29 8.04 0.723 34.4	Val 30 2.47 2.14 0.608 5.34 4.62 0.605 10.0 8.65 0.589 17.8 15.4 0.620 50.3	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581 12.5 10.8 0.597 24.5 21.2 0.660 69.2	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 13.5 0.616 17.3 15.0 0.566 35.6 30.8 0.640 96.8	0.561 rcent of 60 9.48 8.20 0.601 23.3 20.2 0.648 25.1 21.7 0.533 59.7 51.6 0.555 139	70 13.8 11.9 0.593 33.7 29.2 0.640 33.8 29.2 0.518 98.7 85.4 0.529 210	vel 80 18.7 16.2 0.605 46.2 40.0 0.632 42.8 37.0 0.526 141 122 0.578 307	90 23.1 20.0 0.660 56.8 49.1 0.668 59.6 51.6 0.526 188 163 0.559	0.584 ual Perc Charac 100 27.0 23.4 0.735 65.3 56.5 0.748 81.1 70.2 0.537 217 188 0.640 484	entage entage fluid 0.9 0.9 0.8 0.8 0.8 0.8
Valve Size, NPS 2 & 3 × 2 3 & 4 × 3 4 & 6 × 4	Port E mm 38.1 58.7 73.0 111.1	Inches 1.5 2.3125 2.875 4.375	1tag Max Tr mm 22 29 38 51	e - F timum avel Inches 0.875 1.125 2	$ \begin{array}{c c} X_T \\ \hline {\textbf{Flow}} & \\ \hline {\textbf{Coefficient}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{X}_{\text{T}}} \\ \hline {\textbf{C}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}}} \\ \hline {\textbf{K}_{\text{V}$	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870 2.57 2.22 0.783 3.07 2.66 0.922 19.8 17.1	20 1.36 1.18 0.761 2.77 2.40 0.710 6.53 5.65 0.585 9.29 8.04 0.723 34.4 29.8	Val 30 2.47 2.14 0.608 5.34 4.62 0.605 10.0 8.65 0.589 17.8 15.4 0.620 50.3 43.5	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581 12.5 10.8 0.597 24.5 21.2 0.660 69.2 59.9	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 13.5 0.616 17.3 15.0 0.566 35.6 30.8 0.640 96.8 83.7	0.561 cent of 60 9.48 8.20 0.601 23.3 20.2 0.648 25.1 21.7 0.533 59.7 51.6 0.555 139 120	70 13.8 11.9 0.593 33.7 29.2 0.640 33.8 29.2 0.518 98.7 85.4 0.529 210 182	vel 80 18.7 16.2 0.605 46.2 40.0 0.632 42.8 37.0 0.526 141 122 0.578 307 266	90 23.1 20.0 0.660 56.8 49.1 0.668 59.6 51.6 0.526 188 163 0.559 399 345	0.584 ual Perc Charac 100 27.0 23.4 0.735 65.3 56.5 0.748 81.1 70.2 0.537 217 188 0.640 484 419	 entag terist 0.9 0.9
Valve Size, NPS 2 & 3 × 2 3 & 4 × 3 4 & 6 × 4	Port E mm 38.1 58.7 73.0 111.1	Inches 1.5 2.3125 2.875 4.375	1tag Max Tr mm 22 29 38 51	e - F timum avel Inches 0.875 1.125 2	$\begin{array}{c} X_T \\ \hline {\textbf{low D}} \\ \hline \\ \textbf{Flow Coefficient} \\ \hline \\ C_V \\ K_V \\ X_T \\ \hline $	0.406 OWN 10 1.25 1.08 0.766 1.73 1.50 0.870 2.57 2.22 0.783 3.07 2.66 0.922 19.8 17.1 0.584	20 1.36 1.18 0.761 2.77 2.40 0.710 6.53 5.65 0.585 9.29 8.04 0.723 34.4 29.8 0.686	Val 30 2.47 2.14 0.608 5.34 4.62 0.605 10.0 8.65 0.589 17.8 15.4 0.620 50.3 43.5 0.697	0.523 ve Open 40 4.14 3.58 0.589 9.70 8.39 0.581 12.5 10.8 0.597 24.5 21.2 0.660 69.2 59.9 0.609	0.543 ing—Pe 50 6.33 5.48 0.601 15.6 13.5 0.616 17.3 15.0 0.566 35.6 30.8 0.640 96.8 83.7 0.629	0.561 cent of 60 9.48 8.20 0.601 23.3 20.2 0.648 25.1 21.7 0.533 59.7 51.6 0.555 139 120 0.745	70 13.8 11.9 0.593 33.7 29.2 0.640 33.8 29.2 0.518 98.7 85.4 0.529 210 182 0.702	vel 80 18.7 16.2 0.605 46.2 40.0 0.632 42.8 37.0 0.526 141 122 0.578 307 266 0.653	90 23.1 20.0 0.660 56.8 49.1 0.668 59.6 51.6 0.526 188 163 0.559 399 345 0.663	0.584 ual Perc Characi 100 27.0 23.4 0.735 65.3 56.5 0.748 81.1 70.2 0.537 217 188 0.640 484 419 0.683	entage entage entage 0.9 0.9 0.8 0.8 0.8 0.8

Notes: The coefficients on this page are also appropriate for the

EHT Valve.

Table 34. Fisher® EHD, CL2500, Equal Percentage Cages

Modi	fied	Equ	al F	Perce	ntage	- FI	ow D	own	1				Mod	ified Equ	ual Perc Charac	
Valve Size,	Port D	iameter	-	rimum avel	Flow Coeffi-			Val	lve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
NPS	mm	Inches	mm	Inches	cient										100	_
					C _v	1.24	1.82	3.91	6.86	11.1	16.9	23.3	28.1	30.4	33.2	0.94
2 & 3 x 2	38.1	1.5	29	1.125	K_{V}	1.07	1.57	3.38	5.93	9.60	14.6	20.2	24.3	26.3	28.7	
					X _T	0.792	0.681	0.578	0.581	0.605	0.628	0.652	0.693	0.731	0.710	
					C _v	1.94	4.28	9.66	18.1	29.9	45.4	60.5	68.9	74.7	80.9	0.96
3 & 4 x 3	58.7	2.3125	38	1.5	K_{V}	1.68	3.70	8.36	15.7	25.9	39.3	52.3	59.6	64.6	70.0	
					X _T	0.805	0.640	0.593	0.624	0.668	0.672	0.677	0.753	0.779	0.710	
					C _v	2.99	9.01	12.7	19.6	30.3	44.5	65.8	96.3	114	126	0.90
4 & 6 x 4	73.0	2.875	51	2	K_{V}	2.59	7.79	11.0	17.0	26.2	38.5	56.9	83.3	98.6	109	
					X _T	0.681	0.578	0.593	0.559	0.526	0.518	0.544	0.597	0.693	0.693	
					C _v	5.82	16.2	30.6	59.8	115	185	234	254	278	293	0.88
6 & 8 x 6	111.1	4.375	76	3	K_{V}	5.03	14.0	26.5	51.7	99.5	160	202	220	240	253	
					X _T	0.806	0.677	0.624	0.574	0.559	0.597	0.664	0.723	0.706	0.689	
					C _v	22.9	41.9	61.9	86.4	140	225	334	451	537	584	0.85
8 & 10	136.5	5.375	76	3	K_{V}	19.8	36.2	53.5	74.7	121	195	289	390	465	505	
					X _T	0.563	0.698	0.726	0.739	0.734	0.691	0.666	0.682	0.734	0.740	
					C _v	42.4	73.7	104	147	223	351	523	717	899	1010	0.80
12 & 14	177.8	7	89	3.5	K_{V}	36.7	63.8	90.0	127	193	304	452	620	778	874	
					X _T	0.691	0.679	0.652	0.650	0.598	0.549	0.549	0.552	0.551	0.551	
1. At 1009	% travel.															

Notes: The coefficients on this page are also appropriate for the EHT Valve.

Table 35. Fisher® EHS, CL2500, Linear and Equal Percentage Cages

Line	ar -	Flow	Up												Charac	Linear teristic			
Valve Size, NPS	Port Diameter		Maximum Travel		Flow Coeffi-	Valve Opening—Percent of Total Travel													
	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100				
					C_{v}	1.40	2.77	8.42	14.3	19.3	23.9	28.0	31.4	33.4	35.2	0.90			
2 & 3 x 2	38.1	1.5	29	1.125	K_{V}	1.21	2.40	7.28	12.4	16.7	20.7	24.2	27.2	28.9	30.4				
					X_{T}	0.718	0.815	0.624	0.628	0.685	0.706	0.701	0.685	0.677	0.656				
					C_{v}	2.98	11.7	28.3	45.7	58.8	67.9	75.3	82.0	86.4	88.6	0.94			
3 & 4 x 3	58.7	2.3125	38	1.5	K_{V}	2.58	10.1	24.5	39.5	50.9	58.7	65.1	70.9	74.7	76.6				
					X_T	0.706	0.664	0.697	0.710	0.731	0.731	0.727	0.710	0.689	0.681				
					C_{v}	2.92	15.1	30.6	48.6	68.0	86.8	103	116	123	125	0.92			
4 & 6 x 4	73.0	2.875	51	2	K_{V}	2.53	13.1	26.5	42.0	58.8	75.1	89.1	100	106	108				
					X _T	0.748	0.819	0.792	0.636	0.624	0.697	0.779	0.797	0.788	0.797				
					C_{v}	9.11	37.3	78.2	128	180	224	254	269	278	282	0.89			
6 & 8 x 6	111.1	4.375	76	3	K_{V}	7.88	32.3	67.6	111	156	194	220	233	240	244				
					X _T	0.620	0.656	0.589	0.574	0.601	0.648	0.689	0.718	0.714	0.714				
Equa	al Pe	ercen	ıtag	e - F	low U	р								Equ	ual Perc Charac				
		1.5	22	0.875	C _v	1.06	1.31	2.10	3.73	6.26	9.46	13.1	17.3	22.1	26.3	0.91			
2 & 3 x 2	38.1				K _V	0.917	1.13	1.82	3.23	5.41	8.18	11.3	15.0	19.1	22.7				
					X _T	0.970	0.757	0.731	0.689	0.652	0.624	0.624	0.648	0.693	0.723				
3 & 4 x 3			29	1.125	C _v	1.94	2.86	5.09	9.02	14.9	22.6	32.1	43.0	53.9	64.7	0.94			
	58.7	2.3125			K _V	1.68	2.47	4.40	7.80	12.9	19.5	27.8	37.2	46.6	56.0				
					X _T	0.810	0.757	0.681	0.677	0.706	0.706	0.668	0.652	0.723	0.761				
				1.5	C _v	2.35	6.15	9.08	11.3	15.4	22.0	30.3	40.0	53.9	69.6	0.80			
4 & 6 x 4	73.0	2.875	38		K _V	2.03	5.32	7.85	9.77	13.3	19.0	26.2	34.6	46.6	60.2				
					X _T	0.856	0.681	0.620	0.656	0.644	0.597	0.555	0.555	0.578	0.632				
					C _v	4.10	9.98	17.9	24.7	35.3	57.3	93.0	133	174	210	0.79			
6 & 8 x 6	111.1	4.375	51	2	K _V	3.55	8.63	15.5	21.4	30.5	49.6	80.4	115	151	182				
					X _T	0.697	0.677	0.605	0.578	0.597	0.608	0.574	0.555	0.616	0.605				
Modi	ified	I Equ	al F	Perce	ntage	- FI	ow L	Jp					Mod	ified Equ	ual Perc Charac				
					C _v	1.10	1.71	3.37	6.56	11.2	16.5	21.6	26.4	30.8	33.1	0.91			
2 & 3 x 2	38.1	1.5	29	1.125	K _v	0.952	1.48	2.92	5.67	9.69	14.3	18.7	22.8	26.6	28.6				
					X _T	0.898	0.748	0.689	0.640	0.636	0.656	0.693	0.723	0.727	0.677				
					C _v	2.11	4.16	8.97	16.9	28.4	42.5	55.8	68.2	78.5	84.0	0.			
3 & 4 x 3	58.7	2.3125	38	1.5	K _V	1.83	3.60	7.76	14.6	24.6	36.8	48.3	59.0	67.9	72.7				
					X _T	0.828	0.710	0.672	0.731	0.723	0.689	0.731	0.766	0.723	0.706				
					C _v	2.75	8.60	11.8	16.6	26.8	42.3	59.8	78.9	106	116	0.88			
4 & 6 x 4	73.0	2.875	51	2	K _V	2.38	7.44	10.2	14.4	23.2	36.6	51.7	68.2	91.7	100.3				
					X _T		0.608	0.636	0.640	0.570	0.537	0.578	0.664	0.693	0.779				
					C _v	6.81	16.5	30.5	58.0	109	175	228	256	275	281	0.88			
6 & 8 x 6	111.1	4.375	76	3	K _V	5.89	14.3	26.4	50.2	94.3	151	197	221	238	243				
			_		X _T	0.677	0.632	0.593	0.570	0.574	0.601	0.624	0.644	0.693	0.697				
1. At 100°	0/ 4	i .						1											

March 2009

Table 36. Fisher® EHS, CL2500, Micro-Form Valve Plug

Micro	Micro-Form - Flow Up Equal Percenta Characteris															entage teristic			
Valve Size,	Port D	iameter	Maximum Travel		Flow Coeffi-	Valve Opening—Percent of Total Travel													
NPS	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	F _L ⁽¹⁾			
					C _v	0.072	0.106	0.163	0.232	0.324	0.449	0.626	0.871	1.22	1.58	0.91			
	6.4	0.25	19	0.75	K_{V}	0.062	0.092	0.141	0.201	0.280	0.388	0.541	0.753	1.06	1.37				
					X _T	0.778	0.717	0.421	0.474	0.513	0.540	0.558	0.566	0.569	0.644				
	12.7			0.75	C _v	0.220	0.360	0.532	0.746	1.04	1.50	2.15	3.06	4.15	5.37	0.92			
			19		K_{V}	0.190	0.311	0.460	0.645	0.900	1.30	1.86	2.65	3.59	4.65				
		0.5			X _T	0.893	0.803	0.748	0.636	0.633	0.637	0.644	0.642	0.661	0.718				
1,		0.5		0.875 ⁽²⁾	C _v	0.254	0.445	0.636	0.890	1.40	2.23	3.50	4.77	5.72	6.36	0.93			
1-1/2 x 1,			22(2)		K_{V}	0.220	0.385	0.550	0.770	1.21	1.93	3.03	4.13	4.95	5.50				
& 2 x 1					X _T	0.632	0.627	0.630	0.632	0.629	0.628	0.629	0.626	0.633	0.630				
	19.1		19 22 ⁽²⁾	0.75	C _v	0.441	0.681	1.04	1.59	2.36	3.43	4.81	6.43	7.84	8.91	0.88			
		0.75			K_{V}	0.381	0.589	0.900	1.38	2.04	2.97	4.16	5.56	6.78	7.71				
					X _T	0.782	0.725	0.652	0.548	0.519	0.506	0.514	0.641	0.651	0.648				
				0.875 ⁽²⁾	C _v	0.550	0.721	1.24	1.85	2.78	4.43	6.70	8.45	9.27	10.3	0.84			
					K_{V}	0.476	0.624	1.07	1.60	2.40	3.83	5.80	7.31	8.02	8.91				
					X _T	0.516	0.693	0.581	0.587	0.586	0.589	0.585	0.583	0.587	0.585				
					C _v	0.653	1.19	1.89	2.89	4.50	7.08	10.9	15.9	20.0	21.5	0.95			
			22	0.875	K_{V}	0.565	1.03	1.63	2.50	3.89	6.12	9.43	13.8	17.3	18.6				
2 &	25.4	1			X _T	0.809	0.812	0.814	0.809	0.810	0.811	0.817	0.806	0.810	0.810				
3 x 2	25.4	'			C _v	0.884	1.67	2.86	4.96	9.08	15.6	20.9	23.0	23.9	24.2	0.92			
			29 ⁽²⁾	1.125 ⁽²⁾	K_{V}	0.765	1.44	2.47	4.29	7.85	13.5	18.1	19.9	20.7	20.9				
					X _T	0.696	0.700	0.698	0.700	0.696	0.700	0.697	0.745	0.714	0.700				

At 100% travel.
 Travels identified with this superscript are modified equal percentage characteristic. All other travels are equal percentage.

Table 37. Fisher® EHS and EHT(1), CL2500, Cavitrol® III Cage

ΕH	EHS and EHT, Cavitrol - Flow Down Linear Characteristic																	
Trim Stage	Valve Size,	Port Diameter		Maximum Travel		Flow Coeffi-	Min. Throttling		•	I		F _L ⁽³⁾						
	NPS	mm Inches		mm	Inches	cient	C _v ⁽²⁾	10	20	30	40	50	60	70	80	90	100	
	1, 1-1/2 x 1, & 2 x 1 ⁽¹⁾	15.9	0.625	32	1.25	C _v	0.210	0.170	0.480	1.00	1.60	2.20	2.70	3.20	3.70	4.10	4.30	0.98
	1, 1-1/2 x 1, 0 2 x 1 x /	13.9	0.023	52	1.20	K_{V}	0.182	0.147	0.415	0.865	1.38	1.90	2.34	2.77	3.20	3.55	3.72	
	2 & 3 x 2	31.8	1.25	51	2	C _v	0.410	0.460	1.60	2.90	4.10	5.30	6.50	7.70	8.80	9.70	10.1	0.98
Two Stage	20312	31.0	1.25	31		K_{V}	0.355	0.398	1.38	2.51	3.55	4.58	5.62	6.66	7.61	8.39	8.74	
	3 & 4 x 3	47.6	1.875	64	2.5	C _v	0.610	0.990	3.80	6.60	9.40	12.1	14.9	17.6	20.1	22.7		0.98
	0 4 7 7 0	47.0	1.073			K_{V}	0.528	0.856	3.29	5.71	8.13	10.5	12.9	15.2	17.4	19.6	20.8	
	4 & 6 x 4	73.0	2.875	70	2.75	C _v	0.910	2.10	7.10	12.2	17.2	22.3	27.2	32.2	37.3	42.1	43.9	0.98
	74077	70.0				K_{V}	0.787	1.82	6.14	10.6	14.9	19.3	23.5	27.9	32.3	36.4	38.0	
	6 & 8 x 6	111.1	4.375	95	3.75	C _v	1.50	4.60	12.8	20.8	29.0	37.0	44.9	52.9	60.9	69.3		0.98
	00000		4.070			K_{V}	1.30	3.98	11.1	18.0	25.1	32.0	38.8	45.8	52.7	59.9	65.6	
	1, 1-1/2 x 1, & 2 x 1					C _v												
	1, 1 1/2 × 1, α 2 × 1					K_{V}												
	2 & 3 x 2	15.9	0.625	51	2	C _v	0.420	0.280	0.740	1.20	1.60	2.00	2.50	2.90	3.30	3.60		0.99
		10.0	0.020	0.		K_{V}	0.363	0.242	0.640	1.04	1.38	1.73	2.16	2.51	2.85	3.11	3.20	
Three	3 & 4 x 3	33.3	1.3125	64	2.5	C _v	0.730	1.44	2.67	4.06	5.37	6.67	7.93	9.26	10.5	11.8		0.99
Stage		00.0	1.0120	٠.	2.0	K_{V}	0.631	1.25	2.31	3.51	4.65	5.77	6.86	8.01	9.08	10.2	11.3	
	4 & 6 x 4	58.7	2.3125	70	2.75	C _v	1.00	1.00	3.90	6.50	8.90	11.7	14.4	16.9	19.0	20.3	20.8	0.99
				<u> </u>		K _V	0.865	0.865	3.37	5.62	7.70	10.1	12.5	14.6	16.4	17.6	18.0	
	6 & 8 x 6	111.1	4.375	95	3.75	C _v	2.80	4.4	11.2	16.3	21.5	28.3	35	38.5	45.2	51.9		0.99
						K_{V}	2.42	3.8	9.7	14.1	18.6	24.5	30.3	33.3	39.1	44.9	47.7	

^{1.} Cavitrol III trim in the CL2500, NPS 1, two-stage and in the CL2500, NPS 2, three-stage body sizes uses unbalanced valve plugs. These sizes and constructions are EHS valves; all 1. Cavitor in thin in the CL2300, NF3 1, two-stage and in the CL2300, NF3 2, three-stage body sizes uses unbalanced valve plugs. These sizes and constitution other valves in this table are EHT valves.

2. Valves should not be required to throttle at a C_V less than the specified minimum of C_V for an extended period. Erosion damage to the valve seats might result.

3. At 100 percent travel.

Table 38. Fisher® EHT, CL2500, Cavitrol® III, Protected Inside Seat Design

Cv

Κv

Cv

Κv

1.0

0.865

2.8

2.42

EHT, CL2500, Cavitrol III,

	Protected Inside Seat Design, Flow Down Linear Characteristic																				
Trim Stage	Valve Size, NPS	Port Di	iameter	Maximum Travel		Flow Coef-	Mini- mum Throt-	Valve Opening – Percent of Total Travel													
		mm	Inch	mm	Inch	ficient	tling C _v	10	20	30	40	50	60	70	80	90	100				
	3, 4 X 3	32.6	1.284	64	2.5	Cv	0.61	0.3	3.1	5.7	8.3	10.7	12.9	14.9	16.6	18.2	19.5				
			1.204	04		Kv	0.528	0.26	2.7	4.9	7.2	9.3	11.2	12.1	14.4	15.7	16.8				
Two	4,	58	2.284	70	2.75	Cv	0.91	1.1	6.2	11.2	16.1	20.9	25.5	30	34.2	38.3	41.1				
Stage	6 X 4	56	2.204	70		Kv	0.787	0.95	5.4	9.7	13.9	18.1	22.1	25.9	29.6	33.1	35.6				
	6,	96.1	3.784	95	3.75	Cv	1.5	4.3	13.8	23	31.7	39.6	46.9	53.3	59	64	68.1				
	8 X 6		3.784	95	3.75	Kv	1.3	3.7	11.9	19.9	27.4	34.3	40.6	46.1	51	55.4	58.9				
	3,	10.2	0.722	64	2.5	Cv	0.73	1	2.1	3	3.9	5.3	5.9	6.3	6.8	7.4	7.4				
	4 X 3	18.3	0.722	64		Kv	0.631	0.865	1.8	2.6	3.4	4.6	5.1	5.4	5.9	6.4	6.4				

Notes:

Three

Stage

4,

6 X 4

6,

8 X 6

43.7

96.1

1.722

3.784

70

95

2.75

3.75

All other EHT flow coefficients are identical to EHD coefficients. Refer to EHD information using all flange ratings and cage styles. In applications where pressure drop decreases with travel, consider using characterized Cavitrol III cages. Contact your Emerson Process Management sales office for assistance.

2.0

0.78

4.3

3.7

4.0

1.72

11.1

9.6

5.8

16.2

14

7.7

6.6

21.4

18.5

11

9.5

28.2

24.4

12.8

11.1

34.8

30.1

14.5

12.5

38.3

33.1

16.3

14.1

44.9

38.8

18.2

15.7

51.7

44.7

19.2

16.6

54.7

47.3

Specifications

Available Configurations

See table 1.

Common Characteristics: EH valves are single-port, high-pressure, globe-style valves with metal seats, cage guiding, and push-down-toclose valve plug action. EHA valves are angle versions of EH valves

EHD/EHAD: Uses a balanced valve plug⁽¹⁾ with graphite valve plug piston rings; also, see tables 3

EHS/EHAS: Uses an unbalanced valve plug. For low-flow applications, smaller valve sizes are available with specialized valve plug designs. See tables 3⁽¹⁾ and 4.

EHT/EHAT: Uses a balanced valve plug⁽¹⁾ with a pressure-assisted PTFE valve plug seal ring; also, see tables 3 and 4.

NPS 20 Valve Rating

■ Intermediate Standard Class 2185 (per ASME) B16.34) or ■ other ratings available per customer specifications

Valve Sizes

■ Globe Valves: Tables 3 and 5. ■ Angle Valves: Tables 4 and 6

End Connection Styles⁽²⁾

Buttwelding Ends (BWE): See tables 5 and 6 for all available ASME B16.25 schedules that are compatible with ASME B16.34 pressure/temperature ratings

Flanged Ends: ■ CL900, ■ CL1500, or

■ CL2500 ■ ring-type joint (RTJ) or ■ raised-face (RF) flanges according to ASME

B16.5. Flanged ends for EHA valves are available in CL900 and 1500 only

Socketweld Ends (SWE): See tables 5 and 6 for those valve sizes available with socketweld end connections according to ASME B16.11 that are compatible with ASME B16.34

Maximum Inlet Pressures and Temperatures (2,3)

Consistent with applicable CL900, 1500, or 2500 pressure/temperature ratings (for EH valves) or CL900 or 1500 (for EHA valves) according to ASME B16.34 unless limited by individual temperature limits shown in the Material Temperature Capabilities specification⁽⁷⁾ or in figures 24 and 25.

In addition, both steel EH and EHA valves with BWE connections have increased pressure/ temperature ratings as shown in tables 7 and 8.

Maximum Pressure Drops(3)

Valve With Standard Cage: See figures 24, 25, 26 and 27.

Valve With Cavitrol III Cage: 149 bar (2160 psi) for two-stage cage and 207 bar (3000 psi) for three-stage cage. Consult Bulletin 80.2:018, Cavitrol III Two- and Three-Stage Trims, for more information

Valve With Whisper Trim III Cage:

- $0.6 \Delta P/P_1$ maximum for Level A1,
- $0.75 \Delta P/P_1$ maximum for Levels B1 and B3,
- 0.85 △P/P₁ maximum for Level C3, and
- 0.99 ∆P/P₁ maximum for Level D3

Construction Materials

All Except NPS 20 Valve.

Body and Bonnet: ■ WCC steel, ■ LCC steel, ■ WC9 chrome-moly steel, or ■ CF8M (316 SST or 316H SST for service above 538°C [1000°F]) *Trim:* Trim materials are listed in table 11 and 12. Special materials for trim and valve body are available. Please consult your Emerson Process Management sales office

Other Parts: See tables 13 and 14. Yoke Temperature Limit (NPS 8 to 20 Valves): Standard bonnet with cast iron voke is limited to 538°C (1000°F)

NPS 20 Valve.

Valve Body and Bonnet: SA 217 Grade WC9 steel

Cage: Cast M152 SST

Valve Plug: CF8M (316 stainless steel) with alloy 6 seat and guide

Seat Ring: CF8M with CoCr-A (alloy 6) seat or

N06600 with CoCr-A seat Seat Ring Bolting: N07718

Valve Stem: ■ SA 286 Grade 660 Condition 2 stainless steel or ■ other materials upon request

Piston Rings: Graphite

Cage & Seat Ring Gaskets: Silver-plated N04400

Body/Bonnet Bolting: Steel

Packing Rings: Carbon/graphite composition, graphite, and zinc

Packing Box Bushing: Graphite

Packing Box Flange, Studs, and Nuts: S31600 (316 stainless steel) (other materials are available on request)

Springs: ■ G61500 (6150 steel), ■ S17700 (17-7 stainless steel) or ■ N07718

- continued -

51.2:EH March 2009

Specifications (continued)

Shutoff Classifications

See table 10.

For NPS 20 valves, one-half of Class IV leakage (0.005% of valve capacity at full travel) per ANSI/FCI 70-2 and IEC 60534-4

Material Temperature Capabilities(3)

EHD/EHAD and EHS/EHAS: Up to 593°C (1100°F) unless limited by selection of standard trim materials (table 11 and 12 and figures 24, 25, 26, and 27), Cavitrol III and Whisper Trim III trim materials (table 11), or other parts (table 13). EHT/EHAT: Up to 232°C (450°F) unless limited by selection of standard trim materials (tables 11 and 12 and figures 24, 25, 26, and 27), Cavitrol III and Whisper Trim III trim materials (table 11), or other parts (tables 13 and 14)

Flow Characteristic

Standard Cage: ■ Equal percentage, ■ modified equal percentage⁽⁴⁾, or ■ linear

Standard Cage with Micro-Form Valve Plug:

■ Equal percentage or \blacksquare modified equal percentage⁽⁴⁾.

Standard Cage with Micro-Flute Valve Plug:

■ Equal percentage or \blacksquare modified equal percentage⁽⁴⁾.

Standard Cage with Micro-Flat Valve Plug (EHAS only): ■ Linear

Cavitrol III or Whisper Trim III Cage: ■ Linear Special cages: Special characterized flow characteristic cages are available. Please consult your local Emerson Process Management sales office.

Flow Direction

Standard Cage.

- EHD: Normal flow down⁽⁸⁾.
- EHS: Normal flow up⁽⁵⁾.
- EHT: Normal flow down⁽⁸⁾.
- EHAD: Normal flow down
- EHAS: Normal flow up
- EHAT: Normal flow down

Cavitrol III Cage: Flow down
Whisper Trim III cage: Flow up

Flow Direction

For All Except NPS 20 Valves: Flow up through seat ring and out cage openings (for

cages with standard cage windows or drilled Whisper Trim holes) or ■ flow down through cage openings and out seat ring (only for cages with drilled Cavitrol holes)

For NPS 20 Valves: ■ Flow up through seat ring and out cage openings (for cages with standard cage windows or drilled Whisper Trim holes) or ■ flow down through cage openings and out seat ring (only for cages with drilled Cavitrol holes)

Noise Levels

See table 2 and Fisher Catalog 12, section 3 for noise predictions methods

NPS 20 Valve Maximum Flow Coefficient

Approximately 92,000 C_q or 2600 C_v

Port Diameters

See tables 18 and 19.

NPS 8 and 10 Valves.

CL1500: 178 mm (7 inch) port diameter CL2500: 137 mm (5.375 inch) port diameter

NPS 12 and 14 Valves.

CL1500: 254 mm (10 inch) port diameter CL2500: 178 mm (7 inch) port diameter

NPS 14 Valves.

CL2500 Valve: 356 mm (14 inches) port diameter (consult your Emerson Process Management sales office for further information)

NPS 20 Valves: 355.6 mm (14 inches)

Valve Plug Travel and Stem Diameters⁽⁹⁾

See tables 15, 18, and 19.

5 Inch H⁽¹⁰⁾ Boss Diameter: 31.8 mm (1.25

inches)

7 Inch Boss Diameter: 50.8 mm (2 inches) **NPS 20 Valves:** *Valve Plug Travel:* 85.7 mm (9.125 inches) plus or minus 1.6 mm (0.0625 inch)

Valve Stem Diameter: 50.4 mm (2 inches)

Bonnet Style

- Standard bonnet (figures 4 and 5) for all valve sizes, standard bonnet with cast iron yoke is limited to 537°C (1000°F)
- Optional Style 1 extension bonnet for NPS 1 and 2 globe valves, see figure 29

- continued -

Specifications (continued)

Packing Arrangements

■ Single, ■ double, and ■ leakoff standard packing arrangements, or optional ■ HIGH-SEAL packing systems; see Fisher bulletin 59.1:061, ENVIRO-SEAL® and HIGH-SEAL Packing Systems for Sliding-Stem Valves

Yoke Boss Diameters for Actuator Mounting

See tables 20 and 21.

NPS 8 and 10 CL2500 Valves: 127 mm (5 inch H⁽¹⁰⁾) yoke boss diameter

All Other Sizes and Ratings: ■ 127 mm (5 inch $H^{(10)}$) or \blacksquare 178 mm (7 inch) yoke boss diameter NPS 20 Valve: 177.8 mm (7 inches)

Approximate Weight

See tables 22 and 23

Options

- O-ring seat ring gasket constructions⁽⁶⁾
- driver for removing and installing of seat ring

retainer, ■ Class V shutoff for EHT above 232°C (450°F) using PEEK anti-extrusion rings, ■ Class V shutoff for EHD 4-3/8 inch port and smaller for up to 593°C (1100°F) using C-seal trim and EHD 5-3/8 inch port and larger for up to 593°C (1100°F) using Bore Seal trim,

■ lubricator/isolating valve for packing lubrication, and ■ liner with integral seat ring (EHA Series valves only)

Options for NPS 20 Valve

Tool Kit: Includes tools useful during maintenance [3 sets of lifting eyes, 2 hoist rings, flushing plate with either ■ two O-rings for use when flushing fluid is 149°C (300°F) or less or ■ two silver-plated N04400 gaskets for use when flushing fluid is over 149°C (300°F), valve stem lifting nut, lapping fixture and handle, and tamping tools

Special Cage Characterization: Standard, Cavitrol, or Whisper Trim cage openings as necessary to provide the required installed flow characteristic

- 1. In flow up applications only, NPS 6 to 14 EHD and EHT and NPS 8 EHAD and EHAT valves are available with a diverter cone valve plug construction to provide increased stability for higher pressure drops. See figure 11, 16, and 27. Diverter cone valve plug construction is also used for NPS 6 EHD and EHT and NPS 8 EHAD and EHAT applications requiring Whisper Trim III Level A, B, or C cages. Again, for flow up applications only.

 2. EN (or other) ratings and end connections can usually be supplied; please consult your Emerson Process Management sales office.

 3. The pressure or temperature limits in this bulletin and any applicable standard limitations should not be exceeded.

 4. Modified equal percentage characteristic is equal-percentage for the first 90% of travel, then quick-opening for additional capacity.

 5. EHS may be used for flow down in special cases. Please consult your Emerson Process Management sales office NPS 1 and 2 valves with Micro-Form plugs can only be used for flow up applications.

- applications
 6. O-ring seat ring gasket construction is preferred where temperature allows and is standard for EHT valves. See table 13 and figure 25.
 7. For temperatures above 204°C (400°F), the following CF8M (316 SST) valves must be derated: NPS 8 and 10 ASME Special CL1500 or 2500 valves; NPS 12 and 14 ASME Standard or Special CL2500 valves. For more information, contact your Emerson Process Management sales office.
 8. NPS 8 to 14 flow up for boiler feedwater service with pressure drop greater than 69 bar (1000 psi) when a diverter plug is used.
 9. Valves using an equal percentage cage may be traveled an additional 13 mm (0.5 inch) if desired to obtain additional capacity; flow characteristic becomes modified equal percentage.
 10. Hindiestes because adjuster to be post politics.
- H indicates heavy actuator-to-body bolting

Note

Neither Emerson, Emerson Process Management, nor any of their affiliated entities assumes responsibility for the

selection, use, or maintenance of any product. Responsibility for the selection, use, and maintenance of any product remains with the purchaser and end-user.

Cavitrol, ENVIRO-SEAL, Whisper Trim, and Fisher are marks owned by one of the companies in the Emerson Process Management business division of Emerson Electric Co. Emerson Process Management, Emerson, and the Emerson logo are trademarks and service marks of Emerson Electric Co. C-seal is a mark owned by Pressure Science, Inc. All other marks are the property of their respective owners. This product may be covered by one or more of the following patents: 5,129,625; 5,131,666; 5,056,757; 5,230,498; and 5,299,812 or under pending patents.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice. Neither Emerson, Emerson Process Management, nor any of their affiliated entities assumes responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use, and maintenance of any product remains solely with the purchaser and end-user.

Emerson Process Management

Marshalltown, Iowa 50158 USA Sorocaba, 18087 Brazil Chatham, Kent ME4 4QZ UK Dubai, United Arab Emirates Singapore 128461 Singapore

www.Fisher.com

