3660 and 3661 Positioners

Fisher[®] 3660 and 3661 Positioners

Fisher[®] 3660 pneumatic (see figure 1) and 3661 electro-pneumatic single-acting positioners are used with various actuators on sliding-stem valves for throttling applications. These rugged positioners provide a valve position proportional to a pneumatic input or a standard millampere DC input signal received from a control device.

Features

• Accurate, Efficient, Vibration-Resistant Operation—Positioner design provides accurate, fast-responding instruments able to withstand the vibrations of most plant environments. Low steady-state air consumption contributes to efficient operation.

• Variable Gain—Easily adjustable gain and damping adjustments fine tune the positioner stability to specific application requirements.

• Versatility—Positioner accepts a standard pneumatic input signal (3660) or a standard milliampere DC input signal (3661) from a control device. This positioner provides split range capabilities and adjustable zero and spans.

• Fewer Spare Parts Required—Most of the parts for 3660 and 3661 positioners are interchangeable, requiring fewer spare parts to support these positioners.

• **Rugged Construction**—The case and cover are designed to withstand mechanical vibration and rough handling.

W7174 / IL

Figure 1. Fisher[®] 3660 Positioner with Baumann[™] Actuator

• Easy Positioner Adjustments—Zero and span adjustments can be made with the cover in place.

• Control Valve Diagnostic Testing

Capability—To support diagnostic testing of valve/actuator/positioner packages with the FlowScanner[™] valve diagnostic system, connectors, piping, and other hardware can be installed between the 3660 or 3661 positioner and the actuator. A typical connector installation is shown in figure 5.

www.Fisher.com

Specifications

Available Configuration

3660: Single-acting pneumatic valve positioner **3661:** Single-acting electro-pneumatic valve positioner

Input Signal

3660:

■ 0.2 to 1.0 bar (3 to 15 psig), ■ 0.4 to 2.0 bar (6 to 30 psig), or ■ Split range, see table 2 3661:

■ 4-20 mA DC constant current with 30 VDC maximum compliance voltage ■ Split range is also available, see table 2

Equivalent Circuit

3661: 120 ohms shunted by three 5.6 V zener diodes

Output Signal

Type: Pneumatic pressure as required by the actuator up to full supply pressure **Action:** ■ Direct (increasing input signal increases positioner output), ■ Reverse (increasing input signal decreases positioner output)

Supply Pressure⁽¹⁾

Maximum: 6.2 bar (90 psig) Recommended: 10% above actuator requirements

Performance

Independent Linearity: ±1% of output span **Hysteresis:** 0.5% of output span⁽²⁾ **Deadband:** 0.1% of input span

Electromagnetic Compatiblity for 3661 electro-pneumatic positioner:

Meets EN 61326-1 (First Edition) Immunity—Industrial locations per Table 2 of the EN 61326-1 standard. Performance is shown in table 1 below. Emissions—Class A ISM equipment rating: Group 1, Class A

Positioner Adjustments

Span: Adjustable from 19 mm to 50 mm (0.75 to 2 inches) stem travel.

Zero: 0 to 100%. **Gain:** 0.5 to 6% PB (proportional band)⁽³⁾ **Output Volume Damping:** Loop dynamic response adjustment.

Delivery Capacity⁽⁴⁾:

1.4 Bar (20 Psig) Supply: 4.3 normal m³/hour (150 scfh) 2.4 Bar (35 Psig) Supply: 6.6 normal m³/hour (230 scfh)

Exhaust Capacity⁽⁴⁾:

1.4 Bar (20 Psig) Supply: 4.8 normal m³/hour (170 scfh) 2.4 Bar(35 Psig) Supply: 7.4 normal m³/hour (260 scfh)

Steady-State Air Consumption^(4,5)

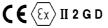
3660: 0.17 normal m³/hour (6.0 scfh) at 1.4 bar (20 psig) supply pressure. 0.22 normal m³/hour (7.9 scfh) at 2.4 bar (35 psig) supply pressure

3661: 0.24 normal m³/hour (8.8 scfh) at 1.4 bar (20 psig) supply pressure. 0.33 normal m³/hour (12.3 scfh) at 2.4 bar (35 psig) supply pressure

Operating Influences

Supply Pressure: 69 mbar (1 psig) change in supply pressure changes the actuator stem position less than $0.16\%^{(6)}$ of the travel

Operative Temperature Limits⁽¹⁾


3660 without Pressure Gauges: -40 to 121°C (-40 to 250°F)

3660 with Pressure Gauges: -40 to 82°C (-40 to 180°F)

3661 with or without Pressure Gauges: -40 to 82° C (-40 to 180° F)

Hazardous Area Classification for 3660

3660 pneumatic positioners comply with the requirements of ATEX Group II Category 2 Gas and Dust

- continued -

Specifications (Continued)

Hazardous Area Classification for 3661

Intrinsic Safety, Non-incendive, Type n

Intrinsic Safety, Non-incendive, Type n

- Intrinsic Safety, Type n (Gas Atmospheres ATEX Only)
- IECEx Intrinsic Safety, Type n (Gas Atmospheres Only)
- SAA Intrinsic Safety, Type n

Refer to tables 6, 7, 8, 9, and 10 for additional information.

Housing Classification for 3661

CSA Type 3 Encl., NEMA 3, IP44 per IEC 60529, except FM / SAA, IP54 per IEC 60529; Mounting orientation requires vent location to be below horizontal.

Mounting

The positioner can be mounted in one of four different configurations. See figure 2.

Pressure Connections

1/4 NPT internal

Conduit Connection for 3661

1/2 NPT (M20 or PG13 adaptors optional)

Maximum Valve Stem Travel

50 mm (2 inch); adjustable to obtain lesser travel with standard input signal-minimum 19 mm (0.75 inch)

Construction Materials

See table 4

Options

3660:

- Instrument and output pressure gauges,
- Integrally mounted bypass valve

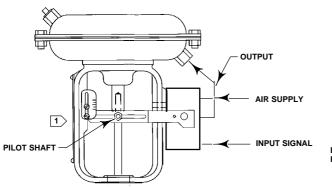
3661: Output pressure gauge 3660 and 3661: Connectors for diagnostic testing ■ stainless steel or ■ brass

Approximate Weight

3660: 2.6 pounds (1.2 kg) **3661:** 3.0 pounds (1.4 kg)

Vent Connection

1/4 NPT internal


NOTE: Specialized instrument terms are defined in ANSI/ISA Standard 51.1 – Process Instrument Terminology. 1. The pressure/temperature limits in this bulletin and any applicable standard or code limitation should not be exceeded. 2. Hysteresis value at a gain setting of 1/2 turn. 3. Adjusting the gain (PB) adjustment will change the nozzle flapper relationship. This nozzle flapper change affects the actuator/positioner response time. 4. Normal m³/hr-normal cubic meters per hour (0°C and 1.01325 bar absolute). Scfh--standard cubic feet per hour (60°F and 14.7 psia).

5. Air consumption at a gain setting of 1/2 turn.6. At supply pressure of 2.4 bar (35 psig).

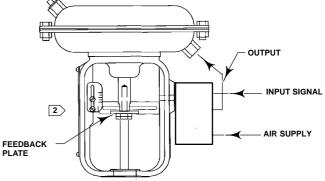
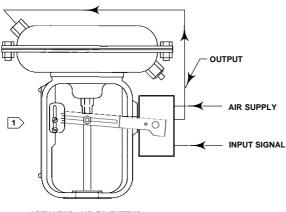
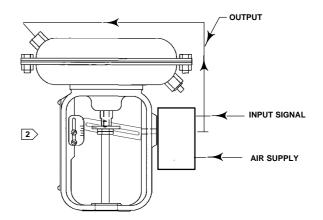

PERFORMANCE PORT PHENOMENON **BASIC STANDARD** TEST LEVEL CRITERIA⁽¹⁾ Electrostatic discharge 4 kV contact IFC 61000-4-2 А (ESD) 8 kV air 80 to 1000 MHz @ 10V/m with 1 kHz AM at 80% Radiated EM field IEC 61000-4-3 1400 to 2000 MHz @ 3V/m with 1 kHz AM at 80% А Enclosure 2000 to 2700 MHz @ 1V/m with 1 kHz AM at 80% Rated power frequency IEC 61000-4-8 60 A/m at 50 Hz А magnetic field Burst IEC 61000-4-4 1 kV А Surge IEC 61000-4-5 1 kV (line to ground only, each) В I/O signal/control Conducted RF IEC 61000-4-6 150 kHz to 80 MHz at 3 Vrms А Specification limit = \pm 1% of span 1. A = No degradation during testing. B = Temporary degradation during testing, but is self-recovering

Table 1. Fisher[®] 3661 Electro-Pneumatic Positioner EMC Summary Results—Immunity




ACTUATOR: AIR-TO-RETRACT POSITIONER ACTION: DIRECT (INCREASING INPUT SIGNAL INCREASES OUTPUT PRESSURE TO ACTUATOR)

ACTUATOR: AIR-TO-RETRACT POSITIONER ACTION: REVERSE (INCREASING INPUT SIGNAL DECREASES OUTPUT PRESSURE TO ACTUATOR)

ACTUATOR: AIR-TO-EXTEND POSITIONER ACTION: REVERSE (INCREASING INPUT SIGNAL DECREASES OUTPUT PRESSURE TO ACTUATOR)

ACTUATOR: AIR-TO-EXTEND OSITIONER ACTION: DIRECT (INCREASING INPUT SIGNAL INCREASES OUTPUT PRESSURE TO ACTUATOR)

NOTES: ASSEMBLY SO PILOT SHAFT IS ON TOP OF THE FEEDBACK PLATE.

2 WHEN MOUNTING ON BAUMANN ACTUATORS, INSTALL FEEDBACK PLATE SO LIP IS DOWN. INSTALL FEEDBACK LEVER ARM ASSEMBLY SO PILOT SHAFT IS UNDERNEATH THE FEEDBACK PLATE.

Figure 2. Mounting Configurations (see table 3 for Positioner Action and Signals)

Table 2. Standard and Split Range Capabilities

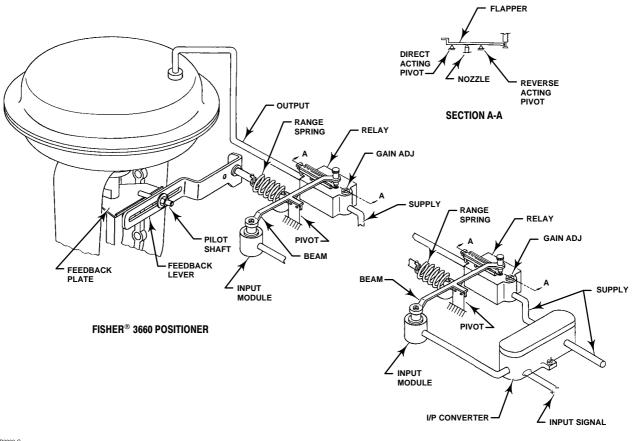

TYPE		3660		3660	3661
Split	0.2 to 1.0 bar (3 to 15 Psig) Input Signal		0.4 to 2.0 bar (6 to 30 Psig) Input Signal		4 to 20 mA DC Input Signal
	Bar	Psig	Psig	Bar	
One Way 1:1	0.2 to 1.0	3 to 15	6 to 30	0.4 to 2.0	4 to 20
Two Way 2:1	0.2 to 0.6 0.6 to 1.0	3 to 9 9 to 15	6 to 18 18 to 30	0.4 to 1.2 1.2 to 2.0	4 to 12 12 to 20
Three Way 3:1	0.2 to 0.5 0.5 to 0.8 0.8 to 1.0	3 to 7 7 to 11 11 to 15	6 to 14 14 to 22 22 to 30	0.4 to 1.0 1.0 to 1.6 1.6 to 2.0	4 to 9.33 9.33 to 14.66 14.66 to 20
Four Way 4:1	0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0	3 to 6 6 to 9 9 to 12 12 to 15	6 to 12 12 to 18 18 to 24 24 to 30	0.4 to 0.8 0.8 to 1.2 1.2 to 1.6 1.6 to 2.0	4 to 8 8 to 12 12 to 16 16 to 20

Table 3. Positioner Input Signal, Action, and Output Signal

INPUT SIGNAL	POSITIONER OUTPUT
Direct 0.2 to 1.0 bar (3 to 15 psig) 0.4 to 2.0 bar (6 to 30 psig) 4 to 20 mA	
Reverse 1.0 to 0.2 bar (15 to 3 psig) 2.0 to 0.4 bar (30 to 6 psig) 20 to 4 mA	Up to 6.2 bar (90 psig)
For split range signal refer to table 2	

Table 4. Construction Materials

PART	MATERIAL			
PARI	Standard	Optional		
Case and Cover	Aluminum			
Feedback Lever Assembly	Stainless Steel			
Range Spring	N09902			
Input Module Diaphragm Relay Gasket O-Ring	ECO EPDM Silicon Rubber Ethylene/Propylene			
Nozzle	Aluminum			
Flapper	Aluminum			
Relay Metal Parts	Aluminum and Stainless Steel			
Gauges	Brass and Plastic			
All Fasteners	Stainless Steel			
Exterior Tubing and Fitting	Copper/Brass	Stainless Steel		
Connectors for Diagnostic Testing	Stainless Steel or Brass			

31B3960-C B2152-4 / IL

Figure 3. Operational Schematic

Principle of Operation

Refer to figure 3 for operational schematic.

The instrument pressure acts on the input module, which controls the flapper-nozzle system of the relay. Supply pressure is applied to the relay, and the output pressure of the relay is supplied to the control valve actuator.

For a direct-acting positioner, increases in instrument pressure causes the input module to pivot the beam. The beam pivots the flapper and restricts the nozzle. The nozzle pressure increases and causes the relay assembly to increase output pressure to the actuator. With a direct-acting actuator, this increased pressure moves the actuator stem downward. Stem movement is fed back to the beam by means of a feedback lever and range spring, which cause the flapper to pivot slightly away from the nozzle to prevent any further increases in relay output pressure. The positioner is once again in equilibrium but at a higher instrument pressure, a slightly different flapper position, and a new actuator stem position.

FISHER 3661 POSITIONER

A decrease in instrument pressure decreases nozzle pressure, which allows the relay to bleed off actuator loading pressure.

Operation of a reverse-acting positioner is similar except that the flapper position is reversed from that shown in figure 3. The reversed position uses the alternate flapper pivot point so that increases in instrument pressure rotate the flapper away from the nozzle to reduce nozzle pressure.

With a 3661 electro-pneumatic positioner, the electro-pneumatic converter provides a 0.2 to 1.0 bar (3 to 15 psig) output pressure proportional to the 4-20 mA input signal. The 0.2 to 1.0 bar (3 to 15 psig) output pressure becomes the input signal pressure to the input module.

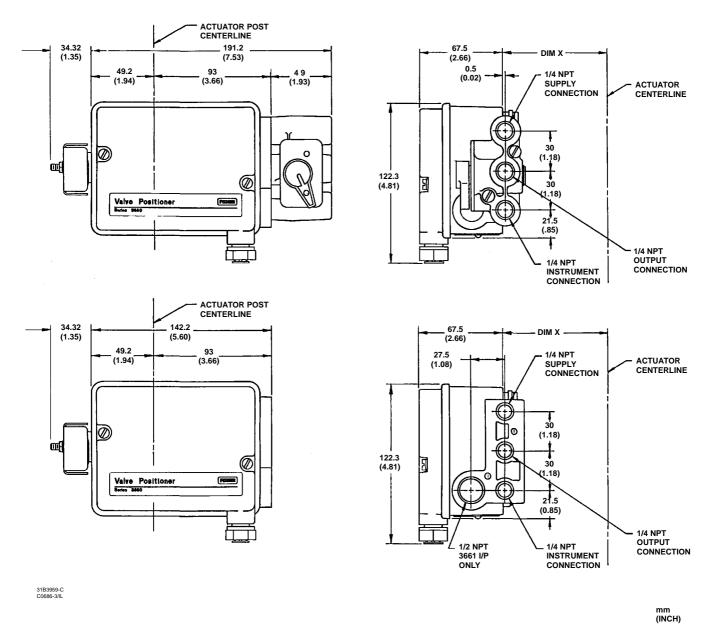


Figure 4. Positioner Dimensions and Connections (see table 5 for the X dimension)

ACTUATOR CENTERLINE TO POSITIONER					
Turne Sine X					
Туре	Size	mm	Inch		
	30	92.2	3.63		
	34	95.3	3.75		
657/667	40	104.9	4.13		
	45/46	108.0	4.25		
	50/60	128.5	5.06		
	225	86.0	3.39		
1250	450	86.0	3.39		
	675	110.0	4.33		
	1.21	83.5	3.29		
3024S	1.31	87.5	3.44		
	1.41	87.5	3.44		
	16in ²	53.8	2.12		
Baumann	32in ²	71.4	2.81		
Daumann	54in ²	71.4	2.81		
	70in ²	71.4	2.81		
	225	81.0	3.19		
GX	750	81.0	3.19		
	1200	81.0	3.19		

Table 5. Dimension X for figure 4

Installation

The supply pressure medium should be clean, dry, filtered air. If the supply source is capable of exceeding the maximum actuator operating pressure or positioner supply pressure, appropriate steps must be taken during installation to protect the positioner and all connected equipment against overpressure.

Overall dimensions and connections are shown in figure 4 and table 5.

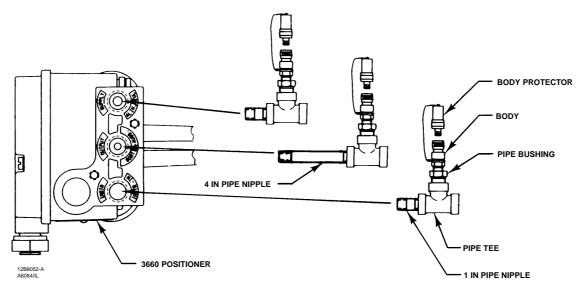
Ordering Information

Application

When ordering, specify:

- 1. Type number
- 2. Input signal range: pneumatic or milliampere
- 3. Maximum supply pressure available
- 4. Valve plug travel: actuator type and size
- 5. Stroking time requirements, if critical
- 6. Ambient temperature range
- 7. Direct or reverse acting

8. Supply pressure regulator, gauges, and bypass, if required


- 9. Hazardous area classification (3661)
- 10. Connectors for diagnostic testing, if required

Note

Neither Emerson, Emerson Process Management, nor any of their affiliated entities assumes responsibility for the selection, use, or maintenance of any product. Responsibility for the selection, use, and maintenance of any product remains with the purchaser and end-user.

3660 and 3661 Positioners

FISHER® 3660 POSITIONER

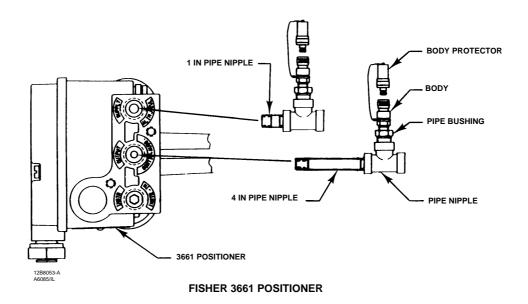


Figure 5. FlowScanner™ Diagnostic System Connections

CERTIFICATION BODY	CERTIFICATION OBTAINED	ENTITY RATING	TEMPERATURE CODE	ENCLOSURE RATING
CSA	(Intrinsic Safety) Zone Ex ia IIC T4/T5/T6 per drawing GE28591 Class/Division Class I, II Division 1 GP A,B,C,D,E,F,G T4/T5/T6 per drawing GE28591	$V_{max} = 30 VDC$ $I_{max} = 150 mA$ $P_i = 1.25 W$ $C_i = 0 nF$ $L_i = 0 mH$	$T4 (T_{amb} \le 82^{\circ}C)$ $T5 (T_{amb} \le 62^{\circ}C)$ $T6 (T_{amb} \le 47^{\circ}C)$	CSA Type 3 Encl.
	(Type n) ⁽¹⁾ Zone Ex nA IIC T6		T6 (T _{amb} \leq 82°C)	CSA Type 3 Encl.
	Class I Division 2 GP A,B,C,D T6		T6 (T _{amb} \leq 82°C)	CSA Type 3 Encl.

 Table 6. Fisher[®] 3661 Positioner Hazardous Area Classifications—CSA (Canada)

Table 7. Fisher® 3661 Positioner Hazardous Area Classifications —FM (United States)

CERTIFICATION BODY	CERTIFICATION OBTAINED	ENTITY RATING	TEMPERATURE CODE	ENCLOSURE RATING
FM	(Intrinsic Safety) Zone Class I Zone 0 AEx ia IIC T4/T5/T6 per drawing GE28590 Class/Division Class I, II, III Division 1 GP A,B,C,D,E, F,G T4/T5/T6 per drawing GE28590	$V_{max} = 30 \text{ VDC}$ $I_{max} = 150 \text{ mA}$ $P_i = 1.25 \text{ W}$ $C_i = 0 \text{ nF}$ $L_i = 0 \text{ mH}$	$T4 (T_{amb} \le 82^{\circ}C)$ $T5 (T_{amb} \le 62^{\circ}C)$ $T6 (T_{amb} \le 47^{\circ}C)$	NEMA 3, IP54
	(Type n) Zone Class I Zone 2 AEx nA IIC T5		T5 (T _{amb} \leq 82°C)	NEMA 3, IP54
	Class I Division 2, GP A,B,C,D T5 Class II, III Division 2, GP F,G T5		T5 (T _{amb} \leq 82°C)	NEMA 3, IP54

Table 8. Fisher[®] 3661 Positioner Hazardous Area Classifications—ATEX

CERTIFICATE	CERTIFICATION OBTAINED	ENTITY RATING	TEMPERATURE CODE	ENCLOSURE RATING
ATEX	 II 1 G Gas Ex ia IIC T4/T5/T6 —Intrinsic Safety 	$\begin{array}{l} U_i = 30 \; \text{VDC} \\ I_i = 150 \; \text{mA} \\ P_i = 1.25 \; \text{W} \\ C_i = 0 \; \text{nF} \\ L_i = 0 \; \text{mH} \end{array}$	$\begin{array}{l} T4 \; (T_{amb} \leq 82^\circ C) \\ T5 \; (T_{amb} \leq 62^\circ C) \\ T6 \; (T_{amb} \leq 47^\circ C) \end{array}$	IP44
	 II 3 G Gas Ex nA IIC T6 —Type n⁽¹⁾ 		T6 (T _{amb} \leq 82°C)	IP44

Table 9. Fisher® 3661 Positioner Hazardous Area Classifications—IECEx

CERTIFICATE	CERTIFICATION OBTAINED	ENTITY RATING	TEMPERATURE CODE	ENCLOSURE RATING
IECEx	Gas Ex ia IIC T4/T5/T6 —Intrinsic Safety	$ \begin{array}{l} U_i = 30 \; VDC \\ I_i = 150 \; mA \\ P_i = 1.25 \; W \\ C_i = 0 \; nF \\ L_i = 0 \; mH \end{array} $	$T4 (T_{amb} \le 82^{\circ}C)$ $T5 (T_{amb} \le 62^{\circ}C)$ $T6 (T_{amb} \le 47^{\circ}C)$	IP44
	Gas Ex nA II T6 —Type n		T6 (T _{amb} \leq 82°C)	IP44

Table 10. Fisher® 3661 Positioner Hazardous Area Classifications—SAA (Australia)

CERTIFICATION	CERTIFICATION OBTAINED	TEMPERATURE CODE	ENCLOSURE RATING
044	Ex ia IIC T4 —Intrinsic Safety	T4 (T _{amb} \leq 40°C)	IP54
SAA	Ex n IIC T4 —Type n	T4 (T _{amb} \leq 40°C)	IP54

Fisher, Baumann, and FlowScanner are marks owned by one of the companies in the Emerson Process Management business division of Emerson Electric Co. Emerson Process Management, Emerson, and the Emerson logo are trademarks and service marks of Emerson Electric Co. All other marks are the property of their respective owners.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice. Neither Emerson, Emerson Process Management, nor any of their affiliated entities assumes responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use, and maintenance of any product remains solely with the purchaser and end-user.

cncvw.com

Emerson Process Management

Marshalltown, Iowa 50158 USA Sorocaba, 18087 Brazil Chatham, Kent ME4 4QZ UK Dubai, United Arab Emirates Singapore 128461 Singapore

www.Fisher.com

©Fisher Controls International LLC 1987, 2009; All Rights Reserved

